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Executive Summary 

Objective of Task 4.2 is the integration of multiple exteroceptive sensors for the monitoring of large 

workspaces and the development of model predictive methods for anticipating future dangerous 

situations. 

This deliverable presents algorithms for prediction-based wide range monitoring developed at Fraunhofer-

IOSB. A sensor setup has been designed for covering the workspace of a mobile manipulator robot. 

Obstacles are detected based on the fusion of information from heterogeneous exteroceptive sensors. 

Using object tracking and state estimation methods, moving obstacles are detected and their future 

motions are predicted. By comparing the predicted obstacle trajectories with the planned path of the 

robot, dangerous situations can be anticipated. Experimental results validate the real-time performance of 

the presented approach. 

The methods and results have been published in [Fetzner13a, Frese14a]. 
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1 Introduction 

Traditionally, humans and robots operate in separate workspaces protected by fences or light curtains. 

Many industrial applications could however benefit from removing these barriers, enabling a closer human-

robot cooperation within the same workspace. For example, mobile manipulation robots can supply parts 

to workbenches where human workers assemble specialised products, or perform welding and riveting 

operations jointly with humans. A prerequisite for such human-robot interaction is the sensor-based 

monitoring of the workspace in order to guarantee the safety of humans. In the SAPHARI project, the 

following two scenarios are considered to demonstrate the feasibility of this approach: 

1. The robot autonomously performs some supply tasks in a joint workspace with human workers and 

uninvolved persons. The robot must avoid collisions with humans. 

2. Additionally, intended physical human-robot interaction occurs, e.g., the robot hands over some 

parts to a human worker. 

In WP4, a concept for monitoring the workspace of mobile manipulators has been developed which relies 

solely on sensors on board the robot. Multiple heterogeneous depth sensors with partially overlapping 

fields of view are applied to monitor the workspace of both the manipulator and the mobile platform. The 

fusion of the information obtained by the different sensors is performed by mapping the detected obstacle 

points and the computed features into a 2½D grid structure. The object tracking algorithm is designed 

specifically for the integration of information from heterogeneous sensors. For collision prevention, future 

positions of tracked moving obstacles are predicted. 

 

2 Design and calibration of the sensor setup for the mobile manipulator 

2.1 Sensor setup 

As the mobile robot may have a large workspace, using on-board sensors is preferable for covering the 

relevant environment with a reasonable number of sensors. For ensuring safety, mainly the distance 

between robot and obstacles is of interest. Therefore, depth sensors which directly measure distances are 

well suited for the considered scenario. 



ICT−287513 SAPHARI  Deliverable D4.2.1 

 

  Page 4 of 16 

 

The KUKA omniRob platform used to demonstrate the monitoring algorithms is equipped with two 2D lidar 

sensors (laser scanners) which scan a horizontal plane near the ground floor. Additional 3D depth sensors 

are applied to capture the workspace of the manipulator. In the current sensor setup, two Kinect depth 

cameras are mounted at the rear of the platform (see Figure 1). Their position and orientation has been 

chosen by means of simulation in order to maximise their field of view and to reduce potential occlusions 

(see SAPHARI Milestone 13). In many applications, these sensors cover the relevant portions of the 

workspace and thus enable the demonstration of safe human-robot interaction. In the future, the sensor 

setup may be extended to a full 3D surveillance of the workspace, while the proposed fusion, tracking and 

prediction methods remain applicable. 

 

 

2.2 Calibration of depth sensors 

The position of the 2D lidar sensors relative to the robot coordinate system is known by construction with 

sufficient accuracy, whereas the 3D depth cameras are mounted on adjustable pan/tilt joints. Thus, their 

exact position and orientation relative to the coordinate system of the mobile platform has to be estimated 

by an extrinsic calibration procedure.  

A novel calibration procedure is proposed which avoids most of the drawbacks of conventional approaches 

relying on dedicated calibration targets. This method uses the robotic manipulator arm as a calibration 

target. The reference is provided by a 3D model of the manipulator. 

The proposed approach is motivated by the application: as the distance of objects to the arm is the main 

concern, the calibration between sensor and arm should be most accurate. By contrast, a conventional 

Figure 1: Placement of depth sensors on the  mobile manipulator. 
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calibration target cannot be placed in the relevant part of the workspace because the arm will obstruct or 

occlude it, resulting in a lower accuracy of the calibration exactly where the highest accuracy is desired. 

Our method starts with acquiring sensor data containing the manipulator arm. The robot is placed in free 

space so that no other objects are located in the vicinity of the arm. The point cloud obtained from the 

depth camera is represented in a coordinate system 𝐓initial given by a rough guess of the sensor position 

relative to the robot coordinate system. This point cloud is registered to an accurate 3D model of the arm 

using the generalised iterative closest point (GICP) algorithm [Segal09a, Rusu11a]. Thereby, a coordinate 

transformation 𝐓align is obtained. The transformation representing the extrinsic sensor calibration is then 

given by 

𝐓extrinsic = 𝐓align 𝐓initial . 

Figure 2 illustrates an example of an acquired point cloud fitted to the robot model. 

In order to cover a wide field of view and to reduce ambiguities resulting from partial symmetry of the arm, 

point clouds of several different arm poses can be incorporated in the registration process. The arm is 

moved sequentially to a number of predefined positions. In each position, a sensor point cloud is acquired 

(Figure 2). In order to reduce sensor noise, temporal median filtering is applied to each pixel in a series of 

depth images before computing the point cloud. Additionally, a reference point cloud is extracted from the 

model. The model encompasses the 3D geometry and the kinematics of the arm so that the extracted point 

cloud represents the geometry of the arm given its current joint angles.  

After completing the sequence of positions, the resulting aggregated sensor point cloud is fitted to the 

aggregated reference point cloud. 

The whole data acquisition and registration procedure is fully automated so that a frequent re-calibration is 

possible without human intervention. 
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Figure 2: Sensor calibration using the manipulator as a calibration target. The point cloud acquired by the 3D depth camera is 
depicted in green, while the reference point cloud extracted from the model is shown in orange. Left: Calibration using a single 

manipulator pose. Right: Point clouds aggregated from a sequence of five poses and fitted by the GICP algorithm. 

2.3 Results 

The performance of the extrinsic sensor calibration method has been evaluated as follows: the manipulator 

has been moved to several distinct poses different from the calibration poses and the misalignment 

between the sensor data and the model in these poses has been quantified. 

The calibration method using the manipulator as a calibration target has proved to be accurate and very 

robust regarding parameter settings. The GICP algorithm reports a root mean square (RMS) alignment error 

of about 7 mm. Calibration using a single manipulator pose can already yield very good results for certain 

poses, while the results are somewhat less accurate for some other poses. The quality of the results is more 

predictable when using a sequence of poses as shown in Figure 2. When compared to the standard ICP 

algorithm, the GICP algorithm which takes into account that the point registration within a plane is more 

uncertain than along the normal of the plane provides slightly better results and a larger region of 

convergence with respect to the initial guess of the transformation. 

However, the differences for the various poses, sequences and algorithm variants were rather small: in the 

worst case, the misalignment has been only about 50 % larger compared to the best case. 

By contrast, a conventional calibration method using a tripod calibration target could not achieve the 

required accuracy: the misalignment was almost one order of magnitude larger. This is not caused by a 

general problem of the conventional calibration method, but can be attributed to the specific geometrical 
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configuration in which the robot manipulator obstructs the placement of the tripod calibration target and 

thus ill-conditioned data results. For a different sensor placement without obstructing objects, the 

reprojection error computed by the calibration method has been about one order of magnitude lower. 

More details on the evaluation method have been reported in [Frese14a]. 

 

3 Wide range obstacle detection based on multi-sensor data 

3.1 Design considerations 

To ensure a safe operation of the robot, the design of the algorithms has to be based on conservative 

assumptions. In particular, we decided not to apply any human detection methods because they might 

induce some amount of missed detections and delay. Instead, all kinds of obstacles are handled in a generic 

way. This enables collision avoidance with arbitrary stationary and moving obstacles, e.g., vehicles, forklifts, 

and other robots. This approach can also cover cases in which human detection is difficult, e.g., when a 

person is carrying a large object or is partially occluded by other obstacles. 

However, this design implies that all stationary and moving objects visible for the sensors have to be 

tracked simultaneously. Thus, the applied methods have to be computationally efficient. 

For a consistent handling of obstacles in the complete surroundings of the robot, the obstacle detection 

and tracking methods have to integrate information from different sensors. Obstacles have to be tracked 

continuously while crossing the fields of view of the heterogeneous sensors. This is quite challenging as the 

employed 2D and 3D sensors differ considerably regarding point density, field of view, resolution, and 

noise. Therefore methods are proposed which are largely independent of the sensor characteristics. Only 

the preprocessing of the obstacle points is specific for each type of sensor. 

3.2 Preprocessing of 2D lidar data 

Two 2D lidar sensors are mounted at opposite corners of the robot platform. Each sensor has a horizontal 

field of view of 270° so that a plane near the floor is completely covered by the two sensors. At the margins 

of the field of view, some rays which detect parts of the robot platform are removed from the sensor data. 

Additionally, outliers occuring at depth discontinuities are filtered out. All remaining object points detected 

by the rays of the lidar scanner represent obstacles. 

As the point data acquired by the 2D lidars is quite sparse, the obstacle points from several subsequent 

scans are aggregated. This means that in addition to the current scan, the data from a certain number of 

preceding measurements is used after an appropriate correction considering the robot's ego-motion. The 

data aggregation helps to alleviate fluctuations caused by sensor noise or occlusions. It is also very useful 

when tracking walking humans, as only the feet are visible to the sensor so that the integration over the 

foot motions allows for a more stable estimation of the humans' positions. 
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3.3 Detection of obstacle points in 3D depth data 

In the sensor setup described in Section 2.1, the 3D depth cameras observe the surroundings of the 

manipulator. Hence, parts of the manipulator are visible in the sensor data. During workspace monitoring, 

it is necessary to distinguish these robot points from obstacle points. Therefore the robot points are 

removed from the depth camera data based on the robot model and the current joint angles (Figure 3). 

This is achieved by applying the Realtime URDF Filter from WP4.3 to the depth image (see SAPHARI 

Milestone 5). Afterwards, the 3D point cloud of the remaining object points in the robot coordinate system 

is computed using the extrinsic calibration parameters. These points represent objects different from the 

robot itself, but not all of them are obstacles relevant for collision avoidance. Especially, the ceiling of the 

room is detected by the 3D depth cameras. As it is not reachable by the robot, it is not considered to be a 

relevant obstacle. In principle, the same holds for points on the ground floor, but the floor is not visible in 

the current sensor configuration. Altogether, only points having a 𝑧 coordinate (height) above the ground 

floor and below the ceiling are considered as relevant obstacle points. 

  

Figure 3: Removal of robot points from depth images using the Realtime URDF Filter. Left: Acquired depth image of the robot 
manipulator and a human reaching into the workspace. Right: Depth image after removal of the robot points according to the 

URDF model. 

3.4 Information fusion in a grid structure 

The fusion of information from different sensors has several benefits. First of all, it enables an almost 

complete coverage of the robot workspace, as the sensors' fields of view are largely complementary. 

Additionally, occluded regions are reduced significantly because the sensors are positioned strategically at 

the corners of the platform so that their bearings towards a given obstacle point are as different as 

possible. Finally, the probability of missed detections or sensor faults is lowered by using heterogeneous 

sensors relying on different measurement principles, e.g., lidar and actively illuminated triangulation in the 

setup described in Section 2.1. 

A two-dimensional grid is used as a data structure for the fusion of the obstacle points detected by 

different heterogeneous sensors. In the 2D grid, each cell is classified as obstacle cell or as free space. The 

grid basically represents the projection of the obstacle points into the ground plane. The grid cells are 

enhanced by features computed from the point clouds such as density of points and height above ground. 

In the area observed by the 3D depth cameras, the grid thus corresponds to a 2½D map. 
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The 2D grid structure has been chosen because it provides a computationally efficient way to integrate data 

points from both 2D and 3D sensors. While a full 3D representation of the obstacles is desirable, it is 

difficult to associate the 2D data, which lacks height information, with the 3D structure. Therefore the 

twofold approach of close and wide range workspace monitoring has been chosen: a 3D octree 

representation is used for close range obstacle detection and distance computation (see Deliverable 4.1.1), 

while the computationally more efficient 2D grid structure is used for wide range object tracking in large 

workspaces. 

The obstacles are represented in the robot coordinate system, with the robot at the center of the grid. For 

safety applications, the robot-centered representation has the advantage that localisation errors do not 

accumulate into errors in the distance to obstacles. 

 

4 Wide range obstacle tracking 

The proposed tracking method starts with building object hypotheses by clustering the obstacle points 

detected by the different heterogeneous sensors. The object hypotheses are then associated to existing 

tracks. Kalman filtering is applied to estimate position and velocity of each tracked object 𝑜𝑖, resulting in a 

state vector 𝐱𝑖  and a covariance matrix 𝚺𝑖. Based on the estimated state and uncertainty, future object 

positions can be predicted for collision avoidance. 

Figure 4 illustrates the data flow between the processing modules. 

Detection of obstacle points

Sensor data

Point clustering

2D grid

Data association

Object feature descriptor    

Kalman filtering

Associated tracks / hypotheses

Classification into moving
and stationary objects

Object state and covariance

Existing
tracks 𝑜𝑖

Robot ego-motion

Sensor 
specific

Sensor 
independent

Prediction

Extrinsic calibration

 

Figure 4: Processing pipeline for obstacle detection and tracking. 



ICT−287513 SAPHARI  Deliverable D4.2.1 

 

  Page 10 of 16 

 

4.1 Clustering 

The obstacle tracking is based on the information from the annotated grid described in Section 3.4. The 

connected components of obstacle grid cells are computed according to the 8-adjacency. For each 

connected component, an object hypothesis   is created and annotated with a feature vector aggregating 

the information from the clustered grid cells. The computed features encompass the position of the object 

centroid, the height of the object, the number of obstacle points detected by each sensor, and the 2D 

shape, i.e., the list of the grid cells occupied by the cluster. 

However, the clusters sometimes are not stable over time. This is due to fluctuations in the sensor data 

arising from sensor noise or occlusions. Especially in the regions only observed by the 2D lidars, the point 

density may be very low so that it is challenging to achieve a stable clustering. 

The method delevoped in the SAPHARI project compares the clustered object hypotheses with the grid cells 

occupied by already tracked objects in order to increase the stability of the clustering over time. First, the 

tracked objects are transformed into the coordinate system of the current grid by taking into account both 

the velocity estimate of the object and the ego-motion of the robot. Then, the number of overlapping grid 

cells between the current hypotheses and the existing tracks is evaluated. For example, if for two 

hypotheses the percentage of grid cells overlapping with the grid cells of the same tracked object exceeds a 

certain threshold, an additional hypothesis is created which represents the union of the two clusters. 

Similarly, composite hypotheses encompassing more than two clusters can be created. Thus, an 

oversegmentation caused by occlusions, by noise or by the sparsity of the sensor data can be avoided. 

Conversely, if a cluster covers more than one tracked object, it may be useful to split the cluster. For 

example, if two tracked objects 𝑜𝑖 and 𝑜𝑘 overlap with the same hypothesis    to a large extent, two 

additional hypotheses are created which consist of the grid cells of    being closer to the cells occupied by 

objects 𝑜𝑖 and 𝑜𝑘, respectively. This step is important for successfully tracking a person walking nearby a 

stationary object, e.g., a table. Figure 5 illustrates the clustering process by means of an example. 

The hypotheses created for composite or split clusters do not replace the original hypotheses obtained by 

the clustering algorithm, but represent additional hypotheses to be considered. The decision whether to 

keep the original or the additional hypotheses is made during the association step. 
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Figure 5: Illustration of the clustering process within the 2D grid structure. 
Leftmost image: Clusters representing the tracked objects at time step 𝒌 − 𝟏. 

2
nd

 image: Clusters obtained from the connected components of the grid at time step 𝒌. 
3

rd
 image: Evaluation of the overlap between the clusters in the grids of time steps 𝒌 − 𝟏 and 𝒌. 

Rightmost image: Additional hypotheses resulting from the comparison. 
At the top of the figure, a composite hypothesis is obtained, whereas at the bottom, a cluster is split into two hypotheses. 

 

4.2 Association 

The association of an object hypothesis   to an already tracked object 𝑜 is performed by means of a 

distance function 𝑑( , 𝑜) which rates the differences of the two corresponding feature vectors. The 

distance is evaluated for all pairs (  , 𝑜𝑖) located within a reasonable spatial neighborhood. The 

neighboring objects for a given hypothesis can be found efficiently using a k-d tree structure. Then the pairs 

(  , 𝑜𝑖) are selected for association in the order of ascending distance. Once a hypothesis   has been 

chosen, all other candidate pairs ( , 𝑜𝑖) for the same hypothesis and also for all composite hypotheses 

containing   are invalidated so that each detected cluster is associated to at most one tracked object. 

The distance function 𝑑(∙,∙) has to be carefully designed to account for the heterogeneity of the sensors 

used in the fusion step. For example, the number of detected obstacle points will differ considerably if   

consists of 2D lidar data while 𝑜 is based on 3D depth data. So the distance function needs to disregard 

some features depending on the observing sensors, while exploiting the full feature information for 

association if the same sensors have detected both 𝑜 and  . This approach enables a reliable association 

also at the borders of the sensors' fields of view. 

In more detail, the distance function is the sum of a generic and a sensor specific term. The generic distance 

function includes the squared Mahalanobis distance of the hypothesis to the object, i.e., the distance in the 

state space is weighted by the inverse of the covariance matrix, (𝐱ℎ − 𝐱𝑜)
T𝚺𝑜

−1(𝐱ℎ − 𝐱𝑜). Furthermore, a 

term assessing the difference in the number of occupied grid cells is added. 

The sensor specific distance function rates, for each sensor, the difference in the number of detected 

obstacle points, and, for 3D sensors, additionally the difference in the measured height of the object. 

Associations in which object and hypothesis have no detecting sensor in common are penalized by adding a 

constant. 
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Tracks for which no current hypothesis matches are kept as unobserved tracks for a specified number of 

cycles. This accounts for missed detections, occlusions, etc. New object detections which cannot be 

associated to an existing track are used to initialise a new track. 

4.3 State estimation 

For estimating and filtering position and velocity of an object, a Kalman filter with a generic linear motion 

model is employed. The generic model can handle all kinds of obstacles the robot must avoid, e.g., humans, 

vehicles, and other robots. The four-dimensional state vector 𝐱(𝑜𝑖) is composed of position and velocity of 

the object centroid within the ground plane: 𝐱 = (𝑥, 𝑦, 𝑣𝑥 , 𝑣𝑦)
T. The linear motion model is as follows, 

𝐱𝑘 = (

1 0
0 1

Δ𝑡 0
0 Δ𝑡

0 0
0 0

1 0
0 1

)𝐱𝑘−1 + (

0
0
𝑎𝑥
𝑎𝑦

) , 

where Δ𝑡 is the time since the last measurement and the unknown accelerations 𝑎𝑥, 𝑎𝑦 are considered to 

be normally distributed noise variables. This system model is well-suited for tracking humans who can 

change their direction of motion very fast and almost arbitrarily. Other obstacles such as vehicles can also 

be tracked using this generic model, although a more specific model considering the vehicle kinematics 

would be preferable if an object classification was available. 

The Kalman filter algorithm computes the predicted object state and its covariance for the next association 

step. Since there is no measurement of velocity, it is solely deduced by the filter. As the positions are 

represented in a robot-centered coordinate system, the object state has to be corrected by the ego-motion 

of the mobile robot platform measured by its odometry sensors. Finally, the update step of the Kalman 

filter is performed using the position of the cluster   selected in the association step as a measurement.  

Since the position is estimated for the centroid of the detected obstacle points, errors may occur if 

different portions of the object are visible to the sensors over time. This may be the case for an object 

entering or leaving the field of view as the robot moves or for an object partially occluded by another 

object moving in front of it. Via this effect, an apparent motion of the object centroid is induced which 

overlays the true motion of the object. A consequence of this effect might be, for example, that a 

stationary object is erroneously classified as moving. 

In order to eliminate this effect, the object position estimate is corrected based on a shape alignment 

procedure. The 2D shapes of the hypothesis and the tracked object corrected by the ego-motion of the 

robot are mapped into the grid. Then, the 2D displacement vector for the hypothesis shape is computed 

which maximises the overlap of hypothesis and object cells. This optimisation is performed using branch 

and bound search. The centroid position of the tracked object is corrected by the computed displacement. 
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5 Prediction-based wide range monitoring 

Based on the velocity estimation obtained from the Kalman filter, obstacles can be classified into moving 

and stationary objects. This enables the robot to act more conservatively in the vicinity of moving objects. 

In addition to a threshold on the absolute value of the velocity, the covariance matrix is taken into account 

in order to improve the classification results. Once a track has been classified as moving, it keeps this 

attribute, as, e.g., a human can stand still for a while and then start moving again. 

In typical factory environments, most tracks will represent stationary obstacles such as walls and tables, 

while only few objects will be moving. Nevertheless, it is necessary to track all of them to be able to 

distinguish moving and stationary objects, unless a sensor which provides a direct velocity measurement is 

employed. 

The Kalman filter algorithm can also compute a longer-term prediction of the object position with 

uncertainties represented in the covariance matrix. The 2D shape of moving objects is mapped into a grid 

at the predicted positions. The object shape is enlarged according to the increasing uncertainty predicted in 

the covariance matrix. Additionally, the robot and its planned trajectory are mapped into the grid (see 

Figure 7). Then, the time to collision and the distance between the robot and a moving obstacle can be 

computed. Depending on the results, the robot is slowed down or stopped if it is necessary to prevent a 

collision.  

 

6 Results 

The proposed approach has been implemented and validated on board the robot in the setting of the 

SAPHARI use cases. Its computational efficency allows to track in the order of hundreds of objects 

simultaneously in real-time at the data rate of the lidar sensors. The method enables reliable detection and 

tracking of moving obstacles even when they cross the fields of view of different heterogeneous sensors. 

The proposed extensions such as composite hypotheses and shape alignment considerably increase the 

tracking performance and reduce the number of false positives compared to the baseline algorithm. 

Figure 6 shows an example of a person entering and leaving the fields of view of all sensors multiple times 

while walking all around the robot. The person is continuously tracked. The estimated positions are 

indicated by the red curve. The currently sensed 2D shape of the walking person is also shown in red at the 

top of the image, with the white arrow illustrating the estimated velocity. The sensors' fields of view are 

depicted as sectors in the colors corresponding to Figure 1. Stationary obstacles are shown in gray. 
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Figure 6: Tracking of a person walking all around the robot. 

 

Figure 7 illustrates prediction-based collision prevention by an example recorded in the setting of the 

mentioned use case. As the robot moves forward, a human crosses its way. The current position of the 

human is colored red. Arrows indicate the velocities of human and robot. The planned trajectory of the 

robot — including both mobile platform and manipulator — is visualised in black, while the predicted 

position of the human is depicted gray. As the two predicted areas touch in this instant of time, the robot is 

slowed down and stopped subsequently in order to prevent a collision with the pedestrian. Clearly, this 

behavior is enabled by the tracking-based prediction — it would not have been possible if all obstacles had 

been assumed to remain stationary at their current position. 

 

Figure 7: Prediction of human and robot positions for collision prevention. 
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To validate that the tracking algorithm is largely independent of the specific sensor characteristics, it has 

also been tested on data acquired by a Velodyne 3D lidar on-board a mobile robot. Pedestrians could be 

tracked successfully at distances of more than 40 m to the sensor. 

 

7 Conclusions 

This deliverable has presented a wide range workspace monitoring concept specifically designed for the 

requirements of a mobile manipulator. A 2½D grid structure is used for fusion of the information obtained 

by multiple heterogeneous depth sensors mounted on board the robot. The sensors are calibrated by a 

reliable, accurate and easy-to-use procedure using the manipulator as a calibration target. By means of a 

carefully designed association function, objects are continuously tracked while passing the fields of view of 

different heterogeneous sensors. Based on the estimated object state, future motions of obstacles are 

predicted in order to anticipate potential collisions with the robot. 

The current and predicted distances between robot and obstacles resulting from close and wide range 

monitoring methods (Tasks 4.1 and 4.2) are used to slow down and stop the robot in oder to prevent 

collisions. Future work includes integrating the workspace monitoring more tightly with motion planning 

and control (WPs 6 and 3), which will ultimately enable the robot to perform evasive motions avoiding 

moving obstacles [Zube14a]. 
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