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Execu ve Summary

This deliverable of work package WP3 presents a summary of the most recent research results on es ma-
on and control of robots with Variable Impedance Actua on (VIA) obtained by the partners of SAPHARI and

developed during the first two years of the project.
The possibility of exploi ng the characteris cs of such devices in planning and feedback control requires the

knowledge of the actual impedance of the robot joints. However, no sensor is available for the direct measure
of such physical quan es. Therefore, in the first part of the document, three compe ve approaches are
presented for es ma ng the s ffness or damping of a single VIA joint. Emphasis is given to methods that
are non-invasive (i.e., which can be used without modifying the device), require less sensing informa on, can
work efficiently on line (so as to capture the me-varying nature of the problem), and are robust with respect
to measurement or input noise and uncertainty in model parameters.

Experimental valida on has beenmade on single-dof VSA and VDA units, but extension tomul -dof robots
is rather straigh orward, thanks to the decentralized design of the proposed methods. In the next period, we
are planning to performalso a quan ta ve comparison of the performanceof these es ma onmethods, which
now cons tute the state-of-the-art in the field, on the qbmove VSA systems developed within SAPHARI and
recently distributed to the involved partners.

The second part of the document focuses on control laws that take advantage of the variable compliance
(and nonlinear resonant modes) of the robot joints for genera ng desired cyclic mo ons. The underlying idea
is to use the natural dynamics of VIA robots to induce, by means of a suitable a rac ve control ac on, a task-
oriented periodic mo on that is also very energy efficient. This can be used for highly dynamic and complex
mo ons, such as hi ng and throwing (with the robot upper body), or walking and running (with the lower
limbs). Representa ve experimental results have been already obtained on the DLR Hand Arm System.

A final sec on is devoted to an op mal control problem for visco-elas c compliant joints, where analy cal
and numerical tools are used so as to achieve the largest possible link velocity in a given me. This is another
example of the intensive research ac vity of SAPHARI on the op miza on of dynamic performance of various
classes of compliantly actuated robots, as already presented in milestoneMS3 Op mal control of modular VSA
manipulators reached @M12 and in the published scien fic papers.

We also men on that ac vi es within the specific task T3.2 of WP3 will con nue as planned un l the end
of the project (the next deliverable D3.2.2 Experimental valida on of control laws for mul -dof VIA manipu-
lators is due @M48), so that the es ma on and control results summarized in this document can be further
developed, integrated, tested, and refined through prac cal use on different pla orms.
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1 Introduc on

In this report we consider some es ma on and control problems that arise in robots using Variable Impedance
Actua on (VIA), and more specifically actuators that allow a variable s ffness (VSA) or variable physical damp-
ing (VDPA).

The need for es ma ng the actual s ffness and/or damping of such actuator/transmission units is due to
the fact that there is no sensor available to measure directly these quan es. In turn, accurate values are
needed for the best performance of model-based op mal/feedforward commands or for the implementa on
of advanced feedback laws, e.g., those guaranteeing simultaneous and decoupled mo on-s ffness control.

The strong dynamic interplay between poten al energy (due to transmission deflec on) and kine c en-
ergy in robots with constant or variable compliant joints poses new addi onal challenges beside the tradi-
onal control tasks of accurate trajectory tracking or stable force interac on. Suitable op mal control ac ons

can be designed in order to obtain extremely large mo on speeds and/or impulsive forces or, conversely, for
preven ng and excessive (unsafe) energy accumula on. It is also possible to exploit the natural vibra onal
dynamics of these nonlinear compliant mechanical systems to realize cyclic or periodic tasks in a robust and
energy-efficient way.

A er recalling in Sec.2 the basic dynamic modeling for robo c devices with VSA, the two Sec ons 3 and 4
present the latest and most robust versions of the s ffness es ma on algorithms developed by UNIPI and
UNIROMA1, respec vely, for a single-dof antagonis c VSA unit. Both approaches work on the motor side of
the compliant transmission units, and can thus be immediately generalized to the mul -dof case. Moreover,
they do not require necessarily a joint torque sensor. They differ in the processing of measured data, which
is done in order to avoid differen a on of noisy measures, in the way measurements are filtered, and in the
actual implementa on of the following Recursive Least Squares (RLS) method.

Sec on 5 presents the extension by IIT of a similar approach for the es ma on of damping in a VDPA.
Special care is used to address the me-varying nature of fric onal phenomena (e.g., in the used clutch).

Two control approaches for genera ng cyclic mo ons in compliant robots are proposed by DLR in Sect. 6.
The first method exactly decouples the par ally feedback linearized dynamics of the robot using complete
model informa on, and yields then a globally a rac ve limit cycle along a desired oscilla onmode. The second
method directly excites the natural dominant oscilla on mode of the compliant robot, requiring no model
knowledge but only measurements of the states of the actuated joints.

Finally, the short Sec on 7 is devoted to an op mal control problem in which the role of damping is inves -
gated, when trying to maximize in a finite me window the velocity of a link driven by a visco-elas c joint. This
result by DLR complements the previous ac vi es of this partner and of UNIPI on the use of op mal control
tools and methods for op mizing the dynamic performance of VIA-based robots.

2 Dynamic modeling

Flexible transmissions are characterized by elas c elements that allow a deforma on (or displacement) ϕ be-
tween the motor angle θ and the link angle q (ϕ = q − θ). A smooth poten al func on Ue(ϕ) ≥ 0 is as-
sociated to the deforma on ϕ, with Ue(ϕ) = 0 iff ϕ = 0. The flexibility torque across the transmission is
τe(ϕ) = ∂Ue(ϕ)/∂ϕ. The s ffness of the transmission is defined as the varia on rate of the flexibility torque
τe(ϕ) w.r.t. the deforma on ϕ,

σ(ϕ) =
∂τe(ϕ)
∂q

=
∂τe(ϕ)
∂ϕ

> 0. (1)

For a single motor driving a rigid link subject to gravity through a (nonlinear) flexible transmission, see
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Fig. 1(a), the dynamic model takes the form

Mq̈ +Dq q̇ + τe(ϕ) + g(q) = τext (2)

Bθ̈ +Dθθ̇ − τe(ϕ) = τ, (3)

where M > 0 and B > 0 are the link and motor iner as, Dq ≥ 0 and Dθ ≥ 0 are the viscous fric on
coefficients at the two sides of the transmission, τ is the control torque on the motor side, and g(q) and τext
are respec vely the gravity and the environment/disturbance torques ac ng on the link.

(a) (b)

Figure 1: Schema c models of a link driven (a) by a single flexible transmission, or (b) by a VSA in antagonis c
arrangement

An antagonis c Variable S ffness Actuator (VSA), see Fig. 1(b), is characterized by two motors working
in parallel and antagonis cally connected to the driven link through nonlinear transmissions. Although dif-
ferent arrangements are possible, we will consider here only the bi-direc onal one, which is also denoted as
the Agonis c-Antagonis c (AA) configura on, see [2]. Depending on the realiza on, the nonlinearity of the
deforma on/torque characteris c of the transmissions results either by the use of nonlinear (e.g., cubic or ex-
ponen al) springs or by the arrangement of linear springs in a nonlinear kinema cmechanism. Representa ve
devices in this class are the biologically inspired VSA [31] and the VSA-II [41].

The pair of motor-transmission units are modeled with two similar equa ons of the form (3), where each
motor-transmission undergoes a deforma on ϕi = q − θi, for i = 1, 2. The dynamics of an antagonis c VSA
is thus

Mq̈ +Dq q̇ + τe,t(ϕ) + g(q) = τext (4)

Bθ,iθ̈i +Dθ,iθ̇i − τe,i(ϕi) = τi, i = 1, 2. (5)

In this case, the (total) flexibility torque transmi ed to the driven link and the associated (total) device s ffness
are given respec vely by

τe,t = τe,1(ϕ1) + τe,2(ϕ2) (6)

and
σt(ϕ) = σ1(ϕ1) + σ2(ϕ2), (7)

where

σi(ϕi) =
∂τe,i(ϕi)
∂ϕi

> 0, i = 1, 2, (8)
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are the local s ffnesses of the two transmissions and ϕ = (ϕ1 ϕ2)T . We stress the separability of the func-
ons (6) and (7), whereas one has in general ϕ1 ̸= ϕ2. Most of the mes the two motor-transmission units

are iden cal (perfect symmetry). However, our later developments apply directly also to the general case.
A general dynamic model of a n-dof manipulator driven by VSA can be wri en by compounding the robot

link dynamics with the propermmotor equa ons.
For mul -dof robots using VSA in antagonis c configura ons, we havem = 2n and the motor equa ons

are of the form (5) introduced above. For serial configura ons of VSA (like in the case of the DLR VS joint or
the IIT AwAS device), we s ll have m = 2n motors, but the two motors at each joint are different in size,
func onality, and mathema cal model. Some mes, the assump on is made that the dynamics of the smaller
motors used to adjust the joint s ffness can be neglected. In that case, onlym = n differen al equa ons are
le in the dynamic model describing the principal motors that actuate the n robot links through (nonlinear)
flexible transmissions, while another vector ofm = n sta c parameters is present that can be instantaneously
changed in order to modify the robot joint s ffnesses. With this in mind, we will let the numberm of motor
equa ons unspecified so as to cover all interes ng situa ons.

Furthermore, we take a similar assump on as in the modeling robots with elas c joints of constant s ff-
ness [44], namely that the rota onal kine c energy of the rotors of the two motors at each joint is due only to
their own spinning. Under this assump on, and neglec ng for simplicity dissipa ve terms, the dynamic model
for a mul -link robot driven by (serial or antagonis c) VSA takes the form

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ e (9)

Bθ̈ + τ e = τ (10)

τ e =
(
∂Ue(θ, q,πσ)

∂θ

)T

= ψ(θ − q,πσ), (11)

where M(q) ∈ Rn×n is the symmetric and posi ve definite link iner a matrix, C(q, q̇)q̇ are the Corio-
lis/centrifugal terms, g(q) is the gravita onal term, and B ∈ Rm×m denotes the constant, diagonal, and
posi ve definite motor iner a matrix. Moreover, πσ ∈ Rm is a set of parameters possibly used to change the
s ffness characteris cs of the flexible transmissions. The robot configura on variablesx = (θT qT )T ∈ Rm+n

can be divided into motor posi ons θ ∈ Rm and link posi ons q ∈ Rn. Only the motor states (θ, θ̇) are di-
rectly actuated via the control input τ ∈ Rm. In most cases, including the DLR Hand-Arm VSA-based system,
the vector func on ψ that expresses the flexibility torques across the flexible transmissions has a local, sepa-
rable dependence: for the generic joint i, we haveψi = ψ(θi−qi) (the parametric dependence on πσi is o en
dropped). Note that the defini on of the flexibility torque in eq. (11) has the opposite sign with respect to the
one used in eqs. (2–3) or (4–5). In Sect. 6 on control, we will also use the property that the inverse func on
ψ−1 exists, and thus that θ − q = ψ−1(τ e).

3 S ffness es ma on using modula ng func ons

We consider the problem of es ma ng the nonlinear s ffness of a single VSA in Agonis c-Antagonist (AA)
configura on. We propose here an algorithm based on modula ng func ons. which allow to avoid the need
of numerical deriva ves and for which the tuning is very simple. An analysis of the errors indicates the nature
of the es ma on convergence and provides guidelines for tuning the parameters of the algorithm.

We first present the modula ng func ons and give some useful proper es that are used then to define
the s ffness es mator. The effects of measurement noise and trunca on errors are analyzed next. Simula-
on results are provided to illustrate the role of parameters of the algorithm on performance, and finally the

method is validated on experimental data. The results summarized in this sec on are presented in [29] and in
the submi ed paper [30].

	  
Page 5 of 41



ICT–287513 SAPHARI Deliverable D3.2.1

3.1 Modula ng func ons

The following defini ons and proposi on come from [37], and have been slightly modified for our needs.

Defini on 1 A modula ng func on of order h on [a, b] (a, b ∈ R) is a func on ψ : [a, b] → R, h- mes differ-
en able such that:

diψ(a) = diψ(b) = 0, i = 0, . . . , h− 1, (12)

where di represent the i-th order deriva ve.

Example 1 Let us define the following func on:

wi,j(u) = (1− u)iuj , u ∈ R, i, j ∈ N. (13)

Then, wh,h, for h ∈ N, is a modula ng func on of order h+ 1 on [0, 1].

Defini on 2 A func on f : [a, b] → R integrable on [a, b] is modulated by taking the inner product with a
modula ng func on ψ:

⟨f, ψ⟩ =
∫ b

a
f(u)ψ(u)du. (14)

Proposi on 1 Let f1, f2 be integrable real valued func ons on [a, b], ψ a modula ng func on of order h on
[a, b] and C ∈ R a constant. Then, we have the following proper es:

1. ⟨dif1, ψ⟩ = (−1)i⟨f1, d
iψ⟩, i = 0, . . . , k − 1,

2. ⟨Cf1 + f2, ψ⟩ = C⟨f1, ψ⟩+ ⟨f2, ψ⟩.

Property 1 is very important, because it allows to replace a deriva ve of a func on f , which is usually unknown
or uncertain (for example, we only have access to a measured signal), by the deriva ve of the modula ng
func on for which the deriva ve is known and can be computed analy cally.

3.2 Es ma on algorithm

The es ma on of the s ffness is derived from the two equa ons (5), that is, we look at the system on the
motor side. The algorithm is split into two parts. In the first part, the equa ons are differen ated to make the
s ffness appear explicitly, the s ffness is approximated by a Taylor expansion, and the resul ng equa ons are
transformed, using modula ng func ons, so that only filtered versions of the measured signals are needed.
In the second part, a Recurslve Least Squares (RLS) algorithm is used to es mate the coefficients of the Taylor
expansion, and thus the s ffness itself.

We start from equa on (5), that is:

τe,i(ϕi) = Biθ̈i +Dθ,iθ̇i − τi, i = 1, 2. (15)

Differen a ng with respect to me the motor equa ons yields

ϕ
(1)
i σi(ϕ) = Biθ

(3)
i +Dθ,iθ

(2)
i − τ

(1)
i , (16)

where the shorthand nota on x(i) has been used to denote the i-th deriva ve of a variable x w.r.t. me. We
take the following Taylor expansion approxima on of orderN (i.e., withN + 1 coefficients)

σi(ϕi) ≈
N∑

j=0

αi
j

(ϕi)j

j!
, (17)
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which gives the rela on
N∑

j=0

αi
j

ϕ
(1)
i (ϕi)j

j!
= Biθ

(3)
i +Dθ,iθ

(2)
i − τ

(1)
i . (18)

Since the maximum deriva ve order is three, we need to take a modula ng func on ψ of order h = 4, which
will be defined later. Modula ng eq. (18) with ψ, one obtains by Proposi on 1:⟨

N∑
j=0

αi
j

ϕ
(1)
i (ϕi)j

j!
, ψ

⟩
=

⟨
Biθ

(3)
i +Dθ,iθ

(2)
i − τ

(1)
e,i , ψ

⟩
, (19)

N∑
j=0

αi
j

⟨
d

(
(ϕi)j+1

(j + 1)!

)
, ψ

⟩
= Bi

⟨
d3θi, ψ

⟩
+Dθ,i

⟨
d2θi, ψ

⟩
−⟨dτe,i, ψ⟩ , (20)

N∑
j=0

αi
j

⟨
(ϕi)j+1

(j + 1)!
, dψ

⟩
= Bi

⟨
θi, d

3ψ
⟩
−Dθ,i

⟨
θi, d

2ψ
⟩
−⟨τe,i, dψ⟩ . (21)

Therefore, the above is a rela on between the s ffness and the measured signals θi and τe,i, where the only
source of error is in the Taylor approxima on of the σi, i = 1, 2.

If we want to es mate the parameters αi with a RLS algorithm, then we need a rela on that shi s with
me t. For this purpose, we consider a = t−T and b = t for the domain of themodula ng func onψ, T being

the length of the integra on window. Then, the modula ng func on is taken as ψ(u) = (u− t+T )3(t−u)3.
We have the following rela on:

N∑
j=0

αi
j

∫ t

t−T

(ϕi)j+1

(j + 1)!
(u) (dψ) (u)du = Bi

∫ t

t−T
θi(u)

(
d3ψ

)
(u)du−Dθ,i

∫ t

t−T
θi(u)

(
d2ψ

)
(u)du

−
∫ t

t−T
τe,i(u) (dψ) (u)du.

(22)

Performing the change of variable u = Tν + t− T and dividing by T 3 yields
N∑

j=0

αi
j

(
T 2

∫ 1

0

(ϕi)j+1

(j + 1)!
(t+ T (ν − 1))(dw3,3)(ν)dν

)
= Bi

∫ 1

0
θi(t+ T (ν − 1))(d3w3,3)(ν)dν

−Dθ,iT

∫ 1

0
θi(t+ T (ν − 1))(d2w3,3)(ν)dν

−T 2

∫ 1

0
τe,i(t+ T (ν − 1))(dw3,3)(ν)dν,

(23)
where the func on w3,3 is one of those defined by eq. (13), namely for equal h = 3.

In order to obtain a discrete- me version of this rela on, we assume that the sampling period is Ts and that
the integra on window is a mul ple of this period, T = HTs, withH ∈ N. Then, we take an approxima on
of the integral with the trapezoidal method, that is:∫ 1

0
f(u)du ≈

H∑
m=0

Wmf(tm), (24)

with tm = mTs,W0 = WM = Ts/2 andWm = Ts,m = 1, . . . , H − 1.
We finally obtain the following rela on at the discrete- me sample k (corresponding to the con nuous

me t = kTs):

Ci(k) =
N∑

j=0

αi
jγ

i
j(k)

△
= AT

i Γ(k), (25)
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withAi = [αi
0, . . . , α

i
N ]T , Γ(k) = [γi

0, . . . γ
i
N ]T , and where

Ci(k) =
H∑

m=0

θi ((k −m)Ts)×
(
BiWm(d3w3,3)(m/H)−Dθ,iWmT (d2w3,3)(m/M)

)
+

H∑
m=0

τe,i ((k −m)Ts)
(
−T 2Wm(dw3,3)(m/M)

) (26)

and

γi
j(k) =

H∑
m=0

(
ϕj+1

i

(j + 1)!

)
((k −m)Ts)

(
T 2Wm(dw3,3)(m/H)

)
. (27)

For k ≤ H , measured values at nega ve instants of mes (k −m)Ts, i.e., with k −m < 0, are simply set to
zero. The deriva ves of w3,3 needed in eq. (26) are given by:

dw3,3(u) = −3w2,3 + 3w3,2, (28)

d2w3,3(u) = 6w1,3(u)− 18w2,2(u) + 6w3,1(u), (29)

d3w3,3(u) = 6w0,3(u) + 54w1,2(u)− 54w2,1(u) + 6w3,0(u). (30)

Note that the defini on of Γi and Ci can be seen as filtering by a Finite Impulse Response (FIR) digital filter.
With the obtained discrete- me rela on (25) between the s ffness parameters in the Taylor expansion and the
measured signals, we can use a standard RLS algorithm (see, e.g., [27]) in order to obtain an approxima on Âi

ofAi.

3.3 Error analysis and robustness

The es ma on method just presented is made essen ally of two steps: first, a rela on between filtered ver-
sions of the measured data and the coefficients of the Taylor expansion of the s ffness is derived, then it is
used in a least squares algorithm. In principle, assuming perfect motor data, three are the possible sources
of errors: noise on the measurements (and on the actua ng torques), trunca on in the Taylor expansion, and
numerical integra on errors. The noise ω added to the measured data is assumed to be a stochas c variable
with zero mean and finite variance. On the other hand, the numerical integra on error is assumed to be neg-
ligible. Reduc on of the es ma on error is pursued here by a suitable choice of parameters made only within
the first step of the method: we will see how to set design parameters so as to reduce sufficiently the nega ve
effects on the second step of the method. In par cular, we shall treat analy cally only the noise on the actu-
a ng torques τi (i = 1.2). Posi on sensors are fairly accurate, and so the effect of a small noise on posi on
measurements will be considered only in simula ons.

Taking errors into account, equa on (25) can be rewri en as follows:

AT
i Γ(k) = Ci(k) + eiRN

(k) + eiω(k), i = 1, 2, (31)

where eiRn
(k) is the error due to trunca on and eiω(k) is the error due to noise (index i is for the two transmis-

sions of the VSA). Three different parameters can be used to reduce these errors: the length of the integra on
window T , the order of the Taylor expansionM , and the sampling period Ts (note that these parameters are
linked via the rela onH = T/Ts).
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Analysis of eiRN
We start from equa on (18), replacing the approxima on of the s ffness by its true expres-

sion and following the same computa ons made for the proposed es ma on method. We obtain:

eiRN
(k) =

H∑
m=0

(σi − σN+1
i ) · (ϕi)((k −m)Ts) · T 2 ·Wm(dw3,3(m/M)), (32)

where σN+1
i is the Taylor expansion of σi up to orderN + 1. From the expression of the trunca on error, we

see that in order to get a bound on this error, the transmission deforma on ϕi has to be bounded. Hence, we
assume that there exist εi1, ε

i
2 such that ϕi(k) ∈ [εi1, ε

i
2] for all k ≥ 0. Applying then Proposi on 2 in [26], one

has
|eiRN

(k)| ≤ T · 5
8

sup
ϕi∈[εi

1,εi
2]

|σi(ϕi)− σN+1
i (ϕi)|, i = 1, 2. (33)

Analysis of eiω We assume here that ω is a white noise with zero mean and finite variance. Similarly to the
trunca on error, we obtain that the noise error contribu on is equal to

eiω(k) =
H∑

m=0

ω((k −m)Ts)T 2Wm(dw3,3(m/M)), i = 1, 2. (34)

Applying Corollary 2 in [26], it follows that eω(k) converges to zero asH goes to infinity.

Se ng of parameters The effect of the parameters on the different errors is summarized in Tab. 1. From the
previous analysis, we can derive some indica ons for the tuning of the parameters. First, the sampling period
Ts should be taken as small as possible in order to reduce the effect of the noise. The length of the integra on
window should be taken large enough to filter the noise, depending on the rela ve power between signal
and noise, which itself depends on the type and quality of the sensors. Even if increasing T will increase the
trunca on error, we see from eq, (33) that this rela on is linear, and typical values of T belong to the interval
[0.1, 2] s. The se ng of T and N can be done independently, and the la er value will highly depend on the
range of transmission deforma ons ϕi.

Trunca on error Noise error contribu on
N ↑ ↘ ←→
Ts ↑ ←→ ↘
T ↑ ↗ ↘

Table 1: Effect of parameters on the different types of errors

Convergence of the RLS We have shown un l now that the error contribu ons can bemade arbitrarily small,
uniformly with respect to me, by suitable tuning of some parameters in the method. The effect of uniformly
bounded errors on the es ma on with a standard RLS algorithm have been studied in [13]. From Theorem 1
therein we obtain that, for uniformly bounded noise, the es ma on error on the coefficients of the Taylor
expansion goes to zero as the bound on the error goes to zero. Thus, the error on the Taylor coefficients (and
hence the error on the s ffness itself) will eventually converge to zero. The conclusion is that we can achieve
arbitrarily small es ma on errors on the s ffness by suitable tuning the design parameters of the method.

	  
Page 9 of 41



ICT–287513 SAPHARI Deliverable D3.2.1

0 2 4 6 8 10
−60

0

60

120

180

240

Time [s]

P
o
si

ti
o
n
 [

cm
]

 

 

q
L

(a) link posi on

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

Time [s]

P
o

si
ti

o
n

 [
cm

]

 

 

q
1
−q

L

q
2
−q

L

(b) clean deforma ons
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(c) clean input torques
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(e) noisy deforma ons
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(f) noisy input torques

Figure 2: Clean (top) and noisy (bo om) data signals used in the simula ons (deforma ons ϕi = q − θi are
affected by noise introduced on the measured motor posi ons θi, for i = 1, 2)

3.4 Simula on results

We have considered an Agonis c-Antagonist VSA mechanism realized with two iden cal cubic springs whose
torque-deforma on characteris c is described by the flexibility torque expression:

τe,i = 10(q − θi)3, i = 1, 2. (35)

The motor and link parameters in eqs. (4–5) are: B1 = B2 = 10−4 [kg m−2],M = 0.0179 [kg m−2],Dθ,1 =
Dθ,2 = 1.27 [Nm s/rad], andDq = 0.0127 [Nm s/rad]. We consider only the case without gravity, i.e., g = 0.

We provide here the results of representa ve simula ons using the the proposed method. The es ma on
methodwas run on the sets ofmeasurement data reported in Fig. 2. In order to precisely evaluate the effects of
noise on the reconstruc on of the device s ffness, three different cases are compared in simula on: without
noise, with white noise affec ng the input torques τi only, and finally with white noise affec ng both the input
torques and the motor posi ons θi (and thus, the deforma ons ϕi = q − θi that enter in the computa ons).
The measurement of the link posi on q is assumed to be ideal.

The importance of noise is quan fied by the Signal-to-Noise Ra o:

SNR = 20 log10
V ar(signal without noise)

V ar(noise)
.

Tthe lower is the SNR, themore significant is the noise. Noise on the flexibility torquemeasurements has been
taken large, corresponding to SNR = 9, while noise on motor posi ons was low with a SNR = 140. We
have also compared the effect ofN in eq. (17) on the s ffness es ma on. The best value in this case would be
N = 2, because the assumed flexibility torques are cubic polynomials in ϕi and thus the s ffness is a quadra c
func on. Since the actual behavior of the springs in the transmissions might not be strictly polynomial (e.g.,
we may consider also exponen al springs), we have tested our algorithm both withN = 2 andN = 4 (which
means, respec vely, three and five coefficients in the Taylor expansion (17)).

The other design parameters are set as follow: the length of the integra on window is T = 0.5 s, the sam-
pling me is taken as Ts = 0.001 s, while the covariance matrix for the RLS is ini alized atP (0) = 108 · IN+1.
The s ffness es ma on results are given in Fig. 3. These are also summarized in Tab. 2, where the average of
the Mean Square Error (MSE) and Mean Square Rela ve Error Percentage (MSREP), see, e.g., [9], have been
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(a) Noisy torques and clean posi ons,
withN = 2
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(b) Noisy torques and posi ons,
withN = 2
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(c) Noisy torques and posi ons,
withN = 4

Figure 3: S ffness es ma on results with different combina ons of clean and noisy signals and with different
order of the Taylor expansion

computed over 100 simula ons. Both MSE and MSREP were evaluated using only data a er convergence of
the es ma on process converged, that is between t = 2 s and t = 10 s. We can see that in every case and
with the same se ngs, the method performs sa sfactorily.

opera ve condi ons MSE MSREP
N = 2 no noise 3.4 10−2 5 10−5

N = 2 noise on torques 19.3 4.8 10−2

N = 2 noise on torques and posi ons 38.4 1 10−1

N = 4 noise on torques 39.9 8.7 10−2

N = 4 noise on torques and posi ons 56.7 1.2 10−1

Table 2: Sta s cal evalua on of simula on results

3.5 Experimental results

We have tested the method on the Agonis c-Antagonis c VSA experimental device with exponen al springs
shown in Fig. 4 and fully described in [12].

In the experiments, the order of the Taylor expansion was set toN = 9 and the length of the integra on
window was T = 0.5 s. The ini aliza on of the covariance matrix for the RLS algorithm was set to P (0) =
105 ·ℑ10. The results of the s ffness es ma on are shown in Fig. 5. We used a nominal model for comparison,
although this not exact due to uncertain es in the parameters of the actuator. Therefore, we consider that the
acquired knowledge of the s ffness is reliable up to an error about 25 %, represented by the horizontal line in
Fig. 5b).
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(a) experimental setup
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(c) deforma ons
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(d) flexibility torques

Figure 4: The experimental setup on the le consists of an antagonis c VSA system with exponen al springs,
realized using a linear spring forced to move on a suitable cam profile. Force sensors (strain gauges) are
mounted on the tendons connec ng the springs to the link. Posi on sensors (encoders) are mounted on the
link and on two tendon pulleys coupled to the input levers. The collected experimental data measurements
are shown on the right: link posi on, deforma ons, and flexibility torques
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Figure 5: Experimental s ffness es ma on (a) for the VSA of Fig. 4 and its rela ve error (b) w.r.t. a nominal
model
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4 Signal-based s ffness es ma on

We present next a s ffness es ma on method in VSA-based systems that builds upon the residual approach
presented in [9]. A main feature of that approach was its applicability with or without the use of a joint torque
sensor. In addi on, the method presented here does not use any knowledge about model parameters (i.e., we
relax also the need of knowing the iner a and damping of the motors). Therefore, the method is purely based
on input and output measurable signals. The results summarized in this sec on are detailed in the submi ed
paper [8].

As done already in Sec. 3 and in [9], we shall work on the motor side of an antagonis c VSA, where we can
es mate the s ffness of each transmission separately, and then compute the total s ffness of the device using
eq. (7). Therefore, we shall drop in the following the index i = 1, 2 in eq. (5), since the treatment is parallel
but iden cal for the two transmissions. Equivalently, we can just consider the motor equa on (3)

Integra ng in me the motor equa on gives

Bθ̇ +Dθθ −
∫ t

0
τe(ϕ)ds =

∫ t

0
τds. (36)

This representa on removes the presence of the second me deriva ve of the motor posi on output, which
is difficult to numerically es mate in the presence of sensor noise. At this stage, the flexibility torque τe(ϕ)
can be approximated by using a linear combina on ofm polynomial basis func ons fi(ϕ), i = 1 . . .m:

τe(ϕ) ≈
m∑

i=1

αifi(ϕ). (37)

We note that eq. (37) plays a similar role as eq. (17) in Sect. 3. Indeed, the two approxima ons are defined
on different, but differen ally related quan es: the flexibility torque here, and the s ffness in the previous
sec on. On the other hand, the N -th order Taylor expansion is a par cular case of (37), when fi(ϕ) = ϕi−1

and m = N + 1. However, the present approxima on is more flexible than the Taylor expansion, since we
can enforce a priori some desired structure to the solu on. A typical example is when the flexibility torque is
known to behave in a skew-symmetric way around ϕ = 0, i.e., τe(−ϕ) = −τe(ϕ). Then, only odd powers of i
will be considered, fi(ϕ) = ϕ2i−1, with a saving on the total number of coefficients.

We can rewrite now eq. (36) as

Bθ̇ +Dθθ −
m∑
i

αi

∫ t

0
fi(ϕ)ds =

∫ t

0
τds. (38)

Assuming that only the input and output signals (τ , θ, ϕ, and θ̇) are known, we have to es mate the parameter
vectorα = (α1 α2 . . . αm) of the func on fi ng the flexible torque in (37), as well as the motor iner a
B and damping Dθ. Thus, we would like to find the parameter vector ξ = (B Dθ α) of dimension n =
(m+ 2) that minimizes the square of the residual error(∫ t

0
τds− F T ξ

)2

, (39)

where

F T =
(
θ̇ θ

∫ t

0
f1(ϕ)ds . . .

∫ t

0
fm(ϕ)ds

)
.

In a discrete- me approach with Ts as the sampling me, we can consider a data set composed by amatrix
A that contains l vectors F k = F (tk), sampled at t = tk = kTs,

A =
(
F 1 F 2 . . . F l

)T
, (40)
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and by the vector

b =
(∫ t1

0
τds

∫ t2

0
τds . . .

∫ tl

0
τds

)T

. (41)

The parameter vector es mate that provides the least square error (39) in a batch mode, namely considering
the whole data set, is obtained by pseudo-inversion of matrixA:

ξ̂ = A#b. (42)

From the es mated parameter vector ξ̂, we extract directly the es matedmotor iner a B̂ andmotor damping
D̂θ. The es mated s ffness is obtained as

σ̂ =
m∑
i

α̂i
∂fi(ϕ)
∂ϕ

=
m∑
i

α̂igi(ϕ). (43)

Note that the func ons gi(ϕ) are available analy cally.

4.1 On-line robust implementa on

The approach represented by eqs. (40–42) collects a batch of data and is evaluated offline: therefore, it as-
sumes that the parameter vector ξ is constant over me. This assump on is not general enough. The motor
iner a B and damping Dθ can be assumed constant during an experiment, although they s ll need to be
iden fied from me to me, and this generally requires disassembling the joint and disconnec ng the flexible
transmissions. On the other hand, the parameter vector α cannot be considered constant during an experi-
ment, mainly for two reasons: i) the transmission characteris cs slightly changes over me, due to varia on
of temperature and stress caused by repe ve movements; ii) the approxima on (37) may not able to capture
well the flexibility torque characteris cs in all its domain (except for simple or ad-hoc transmissions), and thus
the parameterα has to be slowly adapted when changing the working point of the device.

The use of a Recursive Least Squares (RLS) algorithm for on-line es mata on of the s ffness in a VSA device
was originally proposed in [6], and then used also in [7,9,29] aswell as by themethod presented in the previous
sec on. The principal drawback of the RLS algorithm is its sensi vity to poor excita on condi ons. In such
cases, the es ma on of the inverse correla on matrix (ATA)−1 loses the property of posi ve definiteness
and/or symmetry, causing a divergence in the es ma on. A solu on of this problem has been presented in [7]
at the cost of introducing an addi onal parameter c that has to be carefully tuned.

We propose here to use a QR decomposi on-based RLS (QR-RLS) algorithm that can address this instability
phenomena. Instead of working with the inverse correla on matrix of the input signal, the QR-RLS algorithm
performs QR decomposi on directly on the correla on matrix of the input signal. Therefore, this algorithm
guarantees the property of posi ve definiteness and is more numerically stable than the standard RLS algo-
rithm.

For use in standard least squares minimiza on, the QR decomposi on of the l × nmatrixA is given by

QA =
(

R
0(l−n)×n

)
, (44)

whereQ is a l × l orthogonal matrix and R is an n × n upper triangular matrix. Applying the same unitary
matrixQ to the data vector b

Qb =
(
p
⋆

)
(45)

we obtain then-dimensional vectorp (a ⋆ represents the remaining unused values). The offline es ma on (42)
is then obtained as

ξ̂ = R−1p. (46)
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In the on-line recursive algorithm, QR-RLS updates the matrixRk each me step k using the rela on [28]

Q̂k

(
λRk−1

F k

)
=
(

Rk

01×n

)
, (47)

where λ ∈ [0, 1] is the so-called forge ng factor ( pically, larger than 0.95) used to discount older samples,
and thus increasing the es mator adaptability to non-constant parameters. Note that Q̂k is a (n+1)×(n+1)
matrix, and its dimension does not increase with new samples. The QR decomposi on (47) can be recursively
updated using a series of Givens rota ons to zero out the non-zero elements on and below the diagonal due
to the added row F k. The orthogonal matrix Q̂k is used then to update pk as

Q̂k

 λpk−1∫ tk

0
τds

 =
(
pk

⋆

)
, (48)

where an obvious recursive expression can be given also to the integral of the input torque on the le -hand
side. Finally, the on-line parameter es ma on is

ξ̂k = R−1
k pk, (49)

and the s ffness es mate at me t = tk is obtained using (43) with the current parameter vector α̂k.
It should be noted that an ini aliza on phase of n samples is needed to set up a completeRn matrix to

be used in the recursive es ma on. The QR-RLS algorithm is not only robust with respect to poor excita on,
but it is also simple to tune, being the forge ng factor λ the only parameter to be chosen.

4.2 Results with ideal input-output signals

To show the effec veness of the proposed method, we present simula ons on the VSA-II device developed by
the University of Pisa [41]. The nonlinear flexibility torque of the two transmissions of the VSA-II is modeled
as

τe,i(ϕi) = 2ki β(ϕi)
∂β(ϕi)
∂ϕi

, i = 1, 2, (50)

where ki is the (constant) s ffness of the spring in the i-th transmission, and

β(ϕi) = arcsin
(
Ci sin

(
ϕi

2

))
− ϕi

2
, i = 1, 2, (51)

being Ci > 1 a geometric parameter of the 4-bar mechanisms, and ki the s ffness of the internal spring. Due
to the antagonis c arrangement, the total flexibility torque ac ng on the link dynamics is given by the simple
sum in eq. (6). For this reason, and with no loss of generality, we will present just the es ma on results for a
single transmission of this device.

The VSA-II dynamic model is given by eqs. (4–5), and its nominal parameter data were presented in [41].
In par cular, the nominal values for the motor parameters were set there to be BN = 7.3 [Kg·m·mm] and
Dθ,N = 1 [N·mm·s/rad].

FInally, to simulate a non-constant characteris c for the flexible transmission. we have introduced a small
me dri to the spring s ffness value k1,

k1 = k1,N + 0.0005 t [N·mm/rad],

where k1,N = 500 [N·mm/rad] is the nominal spring s ffness found in [41].
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S ffness es ma on methods that need the availability of motor data will use the above nominal data BN

and Dθ,N . However, in the actual model used in the simula ons we have taken values BA and Dθ,A for the
motor parameters that are slightly off the nominal ones, mimicking the situa on of a small (but realis c) error
in the off-line iden fica on phase of the motor dynamics. The actual values considered (or, the ground truth
in the simula ons) were BA = 7.5 [Kg·m·mm] andDθ,A = 0.9 [N·mm·s/rad].

In the first set of simula ons, ideal input and output signal have been considered. Thus, we assume that
the actual q, θ, and θ̇ are measured and no noise or approxima on is introduced on the driving torques τi. The
two motors apply the sinusoidal torques τ1(t) = 50 · sin 0.1πt and τ2(t) = 50 · sin 2πt [N·mm], respec vely.
The simula on runs with a sampling me Ts = 1 ms, star ng from q(0) = θ1(0) = θ2(0) = 0 [rad] (lower
equilibrium configura on), moving under gravity (in the ver cal plane) and with the system ini ally at rest. In
the fi ng func on (37), we used m = 7 polynomial terms fi(ϕ) = ϕi. The forge ng factor in the QR-RLS
algorithm has been set to λ = 0.98.
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Figure 6: S ffness es ma on for one of the two transmissions of the VSA-II device, using three different meth-
ods: Actual s ffness σ (solid, blue) and es mated σ̂ (dashed, green)

Figure 6 shows the results for the s ffness es ma on obtained with the proposed method, compared to
a standard off-line Least Squares method and to the residual/RLS-based on-line es mator presented in [9].
It is rather evident that the newly proposed method outperforms the other two. In fact, the standard LS,
which considers the whole data set in the es ma on of parameters assumed constant, is not able to track
the me varia on of the transmission flexibility. On the other hand, the method proposed by Flacco et al. [9]
works with the assumed nominal motor parameters, and so an imperfect iden fica on of these parameters
is reflected in an error on the es mated s ffness. Moreover, the present method returns also es mates of
the motor parameters that are very close to the actual ones, namely B̂ = 7.5135 [Kg·m·mm] and D̂θ =
0.9148 [N·mm·s/rad].

To quan fy the performance of s ffness es ma on, we have considered the same two es ma on error
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indices of Sect. 3, namely the MSE and the (dimensionless) MSREP, both taken over lfin − lin > 0 samples:

MSE =

lfin∑
k=lin

[
(σk − σ̂k)

2
]

lfin − lin
, MSREP =

lfin∑
k=lin

[(
σk − σ̂k

σk

)2
]

lfin − lin
· 100. (52)

In the evalua on of these two indices, the first lin = 2000 samples have been discarded, corresponding to the
first 2 s of simula on data, so as to avoid the strong influence of an ini al transient phase. The compara ve
values of the indices are given in Tab. 3.

Proposed method Standard LS Flacco et al. [9]

MSE
0.58 102.64 31.60

[N·mm2/rad2]
MSREP

0.002 0.224 0.07
[%]

Table 3: Performance of s ffness es ma on for the VSA-II

4.3 Dealing with signal noises

Thepresence of noise on input andoutput signals has to be taken into account in a realis cmodel of an actuator
with flexible transmission (or a VSA). For the torque input τ we can assume a white Gaussian noise with zero
mean, while noise on the outputs q and θ will depend on the type of sensor we would like to consider. For
instance, white noise was assumed in [29], while the presence of noise due to quan za on and discre za on
of the encoders was considered in [9].

In [9], a Modified Kinema c Kalman Filter (MKKF) was used to filter the encoder quan za on noise. The
MKKF is a causal filter that outputs a smoothed version of the input signal and a good es ma on of its first
me deriva ve, when the SNR is adequate. On the other hand, the s ffness es mator based on opera onal

calculus introduced in [29] and its refined version using modula ng func ons presented in Sec. 3 result both
in a series of non-causal FIR filters on signals that will be feeded in the subsequent RLS algorithm.

A er some tes ng and analysis of these non-causal filtering methods, we realized that their success relies
on the validity of two opera ve condi ons:

1. The same non-causal ac on is applied to all signals used in the RLS algorithm.

2. The characteris cs of the flexible transmissions are quasi-constant (namely, can change only very slowly).

The FIR filtering ac on is applied to a moving windowW of data, and the resul ng value is assigned as output
to the center instant of this window. Thus, when working on-line, the filtered value has a me delay of T W

2 .
Despite this delay, a very effec ve filtering ac on is achieved, because of the possibility of considering both
previous and successive data. Condi on 1 implies that, by having the same me delay for all signals used in
the polynomial fi ng, the es mate the parameter vector α will inherit the same me delay: namely, at step
k we would es mate α̂k−(W/2). From Condi on 2 it follows that we can assume αk ≃ α̂k−(W/2).

With the above in mind, we propose here to introduce two separate filtering ac ons: a non-causal filter, so
as to obtain a robust es ma on of the input/output signals to be used in the QR-RLS algorithm; and a causal
filter, in order to get a non-delayed smoothed value of ϕ to be used in eq. (43) for the es ma on of the current
s ffness.
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The filtered transmission deforma on ϕ̂k can be obtained by two Kinema c Kalman Filters (KKF), one on
the motor posi on θ and one on the link posi on q. Let x be a generic angular posi on and ẋ the associated
angular velocity. In order to es mateψ(k) = ψ(tk) = (x(k) ẋ(k))T with a KKF, we define

ψ(k) =
(

1 T
0 1

)
ψ(k − 1) + µ(k) (53)

z(k) =
(

1 0
)
ψ(k) + ν(k), (54)

where z(k) is the noisy sampled measure (the encoder angle in our case), and µ(k) and ν(k) are discrete-
me realiza ons of zero mean Gaussian noises having, respec vely, covariance matrix Q and variance R. In

the state equa on (53), accelera on is not considered andµ represents also the noise due to this absence. By
defining Γ =

(
T 2/2 T

)T , the covariance matrix of µ isQ = Va ΓΓT , where Va is the variance associated to
the state. While the variance R of the measures is usually set to a constant value if the noise is Gaussian, in
the case of encoder quan za on the Modified KKF proposed in [9] should be used instead.

A Savitzky-Golay (SG) non-causal filter [40] is applied to the data needed as inputs to the QR-RLS, namely q,
θ, and τ . This digital filter is applied to a windowW of measured data and is able to obtain their smoothing, by
increasing the signal-to-noise ra o without largely distor ng the signal. This is achieved by fi ng low-degree
polynomials to successive sub-sets of adjacent data points. When the data points are equally spaced, as in our
case, an analy cal solu on to the least squares fi ng can be found, in the form of a single set of coefficients
that can be applied to all data sub-sets. The filter output provides smoothed es mates of the input signal (and
of deriva ves of the smoothed signal) at the central point of each data sub-set. The QR-RLS applied on SG
filtered data results in a very robust es ma on of the parameter vector α̂k−(W/2), despite this comes at the
price of a me delay of T W

2 seconds.
Assuming that condi ons 1) and 2) are sa sfied, s ffness es ma on is obtained by pu ng together the

two filtered informa on:

σk ≃
m∑
i

α̂(i,k−W
2 )gi(ϕ̂k). (55)

4.4 Results with realis c signals

To show the effec veness of the proposed approach and its robustness with respect to noise, we have com-
pared it with two state-of-the-art s ffness es mators.

The first one is the residual-based s ffness es mator [9]. We have simulated the same VSA-II model under
the same opera ve and design condi ons: encoder quan za on, white noise on the motor torques, torque
input profiles, polynomials used for the fi ng, etc. The same causal MKKF used in [9] was applied to es mate
ϕ̂, and a SG filter with a window of 1 second (W = 1000 samples at Ts = 0.001 s) and a 20-th degree
polynomial for es ma ng the QR-RLS inputs. The forge ng factor was not considered (λ = 1).

The total s ffness es mated with the present method shows a good quality, see Fig.7. The result is qualita-
vely similar to the one obtained in [9], while a quan ta ve comparison can be done by looking at the indices

MSE and MSREP as defined in (52). Here, we obtained

MSE = 2.0919 [N·mm2/rad2] and MSREP = 0.5162%,

while in [9] the result was

MSE = 92.2 [N·mm2/rad2] and MSREP = 0.046%.

In addi on, the new method provides also a good es mate of the motor parameters: B̂1 = 7.2360 and
B̂2 = 7.3022 [Kg·m·mm]; D̂θ,1 = 0.9731 and D̂θ,2 = 0.9980 [N·mm·s/rad].
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Figure 7: Es ma on of the total s ffness of the VSA-II device, when modeled and controlled under the same
realis c condi ons as in [9]: Actual s ffness σ (solid, blue) and es mated σ̂ (dashed, green)

The second work taken into account is [29], where an antagonis c VSA with cubic flexibility torques has
been considered. Also in this case, we simulated the same model (B = 10−4, Dθ = 1.27, etc.), using the
same fi ng polynomials and torque inputs, and under the same opera ve condi ons (heavy white noise on
all signals). We used the KKF to es mate ϕ̂ with Va = 1010 and R = 104, and a SG filter with a window of 1
second (W = 1000) and a polynomial of the 20-th degree polynomial for es ma ng the QR-RLS inputs. The
forge ng factor was set again to λ = 1.
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Figure 8: S ffness es ma on for the antagonis c VSA with cubic flexibility torques considered in [29]: Actual
s ffness σ (solid, blue) and es mated σ̂ (dashed, green)

Es ma on of the total s ffness is shown in Fig.8. The numerical comparison of the es ma on performance
indices yields for the present method

MSE = 1.2583 [N·mm2/rad2] and MSREP = 1.6936%,

while in [29] the result was

MSE = 4.2 [N·mm2/rad2] and MSREP = 0.7%.

In the present case, good es mates were found also for the a priori unknownmotor parameters: B̂1 = 0.0023,
B̂2 = 7.1942× 10−4, D̂θ,1 = 1.2843, and D̂θ,2 = 1.2706.

It is difficult to assess in general the superiority of one method over the other in terms of performance,
especially when just looking at a single or few simula ons. Nonetheless, we can at least conclude that the
present method has the same s ffness es ma on quality of state-of-the-art algorithms, while it does not rely
on the knowledge of motor parameters (actually, of any physical parameter).
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5 Damping es ma on

Wemove next to another issue in the characteriza on of general Variable Impedance Actuators (VIA), namely
es ma on of the total damping of the device. Indeed no sensor exists for measuring physical impedance, nor
for measuring its specific individual elements: s ffness and damping. As we have seen in the previous Sects. 3
and 4, there is ac ve on-going research focusing on the design and implementa on of s ffness es mators for
VSA, as a follow-up of the works [7, 9, 12].

On the other hand, Variable Physical Damping Actua on (VPDA) has been lately inves gated as a comple-
ment to compliant actuators [22]. In these actuators, the transmission damping can be regulated on demand.
However, no physical damping es ma on algorithms exist at present. Similar to the use of s ffness es ma-
on, an es ma on method of the device damping would be certainly useful for feedback control purposes, as

well as for diagnos cs. We summarize here the method proposed in the submitetd paper [19].

5.1 Es ma on of damping in VPDA

We present a damping es ma on method that employs a robust RLS algorithm. The method is based only
on the measured dissipa on torque and on the transmission deforma on velocity, which is derived from the
measured deforma on angle.

Consider a generic damping element embedded in a mechanical system, genera ng a dissipa on torque
τd which depends in general on its displacement z and velocity ż, and on the control input u to the damping
element. The corresponding dampingD > 0 of this element can be expressed as

D(z, ż, u) =
∂τd(z, ż, u)

∂ż
, (56)

in which the dissipa on torque is assumed to be an odd func on with respect to the velocity, i.e.,

τd(z,−ż, u) = −τd(z, ż, u). (57)

We can formulate an es ma on problem in which the output signal, namely the (scalar) dissipa on torque
τd, is recursively es mated by a linear adap ve filter with n unknown coefficients w = (w1, . . . , wn)T and
n input signals v = (v1, . . . , vn)T , which can be func ons of other system readings. The input-output linear
model is then expressed at discrete- me instants ti = iTs, for i = 1, 2, . . . , by

τd(i) = vT (i)w∗ + ξ(i), (58)

where w∗ is the op mal solu on in the mean squares sense and xi is a zero-mean white Gaussian noise
sequence with variance σ2.

The dissipa on torque is then approximated by a polynomial func on of the damper velocity ż that sa sfies
the skew-symmetric condi on (57). Therefore, the elements of the input signal vector are expressed by

vj = ż2j−1 for j = 1, . . . , n. (59)

Similarly to the s ffness es ma on case, the dampingD can thenbeobtained from (56) by analy cal deriva on
as

D =
(
∂v

∂ż
(i)
)T

w = (v′(i))Tw, (60)

where the elements of v′ are
v′j = (2j − 1) ż2j−2 for j = 1, . . . , n. (61)

Givenm > n data points, the rela on (58) leads to the over-constrained linear system

τ d = Vw∗ + ξ, (62)

where τ d = (τd(1), . . . , τd(m))T , ξ = (ξ(1), . . . , ξ(m))T and V = (v(1), . . . ,v(m))T ∈ Rm×n.
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RLS algorithm Given an es mate of coefficients ŵ, the predic on error vector ϵ ∈ Rm is defined by

ϵ = τ d − Vŵ. (63)

Provided that V is full column rank, minimiza on of the cost func on (LS problem)

J(ŵ) = ϵT ϵ, (64)

is provided by the LS es mate
ŵ =

(
VTV

)−1
VTτ d. (65)

The on-line version of this solu on leads to the standard RLS es ma on algorithm (see, e.g., [38]), which is
reported here for the reader’s convenience:

ϵ(i) = τd(i)− vT (i)ŵ(i− 1) (66)

r(i) = vT (i)P(i− 1)v(i) (67)

k(i) =
P(i− 1)v(i)

1 + r(i)
(68)

ŵ(i) = ŵ(i− 1) + k(i)ϵ(i) (69)

P(i) =
(
I− k(i)vT (i)

)
P(i− 1). (70)

where r is themodified Kalman residual covariance,k ∈ Rn is themodified Kalman gain vector, andP ∈ Rm×m

denotes the covariance matrix of the predic on error.
In the s ffness es ma on method presented in [9], some instability problems due to the lack of persistent

excita on of the standard RLS algorithmwere a enuated by using a modifica on introduced in [3]. In a similar
way, equa ons (69) and (70) can be replaced by

ŵ(i) = ŵ(i− 1) + α(i)k(i)ϵ(i) (71)

and
P(i) =

(
I− α(i)k(i)vT (i)

)
P(i− 1). (72)

where α(i) is a stability factor which is simply selected as in [9],

α(i) = c
1 + r(i)
1 + c r(i)

, (73)

where c > 0 is the stabilizing factor.

Damping es ma on algorithm The final algorithm for es ma ng damping in VPDA is obtained by a suitable
modifica on of the RLS method to account for me-varying condi ons.

It is well-known that an exponen al forge ng factor can be incorporated as a weigh ng term in the RLS
algorithm, so as to a ain faster convergence for me-varying systems, discoun ng older signals and relying
more on recent ones [17]. One way to Include a forge ng factor, is to modify the cost func on (64) as

J(ŵ) = ϵTR−1ϵ, (74)
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where R = diag{λm−1, ..., λ0} and λ ∈ (0, 1] is the forge ng factor [27].
A further method for enhancing the tracking performance of the RLS algorithm is by using a direc onal

forge ng scheme, in which past data are forgo en solely in those direc ons of the parameter space from
where new informa on comes [18]. The exponen al and direc onal forge ng RLS algorithm, modified by
Bi an [3] with the goal of achieving a be er es ma on performance for me-varying parameters, can be
described by incorpora ng a correc on factor δ ∈ [0, 0.01] in the update of the covariance matrix as

P(i) =
(
I− P(i− 1)v(i)vT (i)

β−1(i) + r(i)

)
P(i− 1) + δI, (75)

where β(i) is an auxiliary variable defined as

β(i) =

 λ(i)− 1− λ(i)
r(i)

, if r(i) > 0,

1, if r(i) = 0.
(76)

When λ = 1, no forge ng effect is applied giving up a more prompt es ma on response to me-varying
parameters. On the other hand, any decrease of this factor enhances the contribu on of latest data on the
es ma onprocess (which is good) but also the sensi vity to noise (which is bad) [4]. To copewith this situa on,
one needs to resort to a variable forge ng factor through monitoring predic on error: when the predic on
error grows rapidly, the forge ng factor is progressively decreased down to a minimum value λmin; when the
predic on error is small, it is increased up to its maximum value, λ = 1. Thus, a variable forge ng factor
scheme can be expressed as [45]

λ(i) = λmin + (1− λmin) 2L(i), (77)

with

L(i) = −round
(
ρϵ2(i)
η(i)

)
. (78)

where ρ is a design parameter, the func on round(.) rounds its argument to the nearest integer, and η(i) is
the energy of an a priori es ma on error defined for modera ng the sensi vity of the forge ng factor to the
dynamic range of the error. The la er is updated as

η(i) = λcη(i− 1) + ϵ2(i), (79)

being λc another constant forge ng factor.
The proposed algorithm is based on the use of a variable weigh ng factor (77)–(79) in the exponen al and

direc onal forge ng RLS algorithm defined by (66)–(69) and (75)–(76). The complete method is summarized
in Algorithm 1.

5.2 Experimental results

Experiments were carried out to test the damping es ma on algorithm on a VPDA device, the CompAct ac-
tuator developed at IIT, see [21]. Excita on of the system is performed through manual mo on of the link,
while the motor is controlled to maintain a fixed posi on. To achieve a desired viscous damping Dd in this
mechanical system, the normal force applied to the fric on plates is modulated so as to emulate a viscous
damping behaviour. For ease of implementa on, a value n = 2 was used in the approxima on (59), resul ng
in a linear-cubic polynomial.
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Algorithm 1 Damping es ma on algorithm
Parameters: λc, λmin, ρ, δ and n
Ini aliza on: η(0), P(0),w(0) and i = 0
while “systems is running” do
i = i+ 1
input τd(i), ż
v(i) = (ż, . . . , ż2n−1)T

ϵ(i) = τd(i)− vT (i)ŵ(i− 1)
η(i) = λcη(i− 1) + ϵ2(i)
L(i) = −round(ρϵ2(i)/η(i))
λ(i) = λmin + (1− λmin) · 2L(i)

r(i) = vT (i)P(i− 1)v(i)
if r(i) > 0 then

β(i) = λ(i)− 1− λ(i)
r(i)

else
β(i) = 1

end if

k(i) =
P(i− 1)v(i)

1 + r(i)
ŵ(i) = ŵ(i− 1) + k(i)ϵ(i)
τ̂d(i) = vT (i)ŵ(i)
v′(i) =

(
1, . . . , (2n− 1)ż2n−2

)T
D̂(i) = v′T (i)ŵ(i)

P(i) =
(
I− P(i− 1)v(i)vT (i)

β−1(i) + r(i)

)
P(i− 1) + δI

output τ̂d(i), D̂(i)
end while
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Figure 9: Varia on in dissipa on torque vs. rela ve velocity of fric on plates

Figure 10: Time evolu on of the clutch normal force and of the rela ve velocity of clutch plates

Constant damping The first experiment consists in es ma ng a desired constant viscous damping behaviour,
as specified by Dd = 3 [Nm s/rad]. Figure 9 shows the varia on in dissipa on torque versus the change in
rela ve velocity of the fric on plates. Since a constant damping was regulated, based on (56) the slope of
the trend-line of this graph provides a value D = 3.02 Nms/rad with Normalized Root Mean Squared Error
(NRMSE) of 2.74%, represen ng a suitable approxima on of the real damping in the system.

The es ma on of the constant damping using the proposed approach provided a NRMSE of 2.89%, which
is quite close to the previous value. The me evolu on of the fric on force applied by the clutch plates and
the rela ve velocity of the plates are shown in Fig. 10. The behaviour of the es mated torque in comparison to
the measured one is reported in Fig. 11, together with the normalized error between the two. The normalized
error is below 1%, showing the good accuracy of the es ma on.

Figure 12 represents the evolu on in me of the coefficients w1 (weigh ng the linear velocity term) and
w2 (weigh ng the cubic velocity term) of the approxima ng polynomial, the desired constant damping, the
(slightly oscillatory) es mated one, and the percentage error between the two. The last plot shows that this
error reaches a maximum of about 5%, being mostly due to unmodelled fric on around the zero-velocity area
(the effect of s c on on the dissipa on torque around the origin can also be observed in Fig. 9).
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Figure 11: Time evolu on of measured (solid, blue) and es mated (dashed, red) dissipa on torque [top], and
the normalized error between the two [bo om]

Figure 12: Time evolu on of the two coefficientsw1 (blue) andw2 (red) in the polynomial approxima on [top],
constant desired (blue) and es mated (red) damping [center], and the error between the two [bo om]
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Figure 13: Time evolu on of the clutch normal force [top], measured (blue, solid) and es mated (red, dashed)
dissipa on torques [center] and the normalized error between the two [bo om]

Time-varying damping In this second experiment, the normal force applied on the fric on plates is modu-
lated so as to produce a desired me-varying damping, as specified by by

Dd(t) = 1 + 1.4 sin2(0.05π t) + 1.7 sin2(0.1π t). (80)

The results obtained using the damping es ma on algorithm provide in this case a value NRMSE of 3.17%.
Figure 13 shows the force applied to fric on plates, the measured and es mated torque, in addi on to the
corresponding normalized error between measured and es mated torques. The error in this experiment is
also below 1% valida ng the accuracy of es ma on when compared to the actual value.

Figure 14 collects the me evolu ons of all the relevant quan es. It can be seen that error between
reference and es mated values varies from less than 10% in the domain of high damping to about 30% for
damping of lowermagnitudes. This is comparablewith the accuracy of the iden fied fric onmodel in response
to low and high forces.

6 Stabilizing cyclic mo ons in VSA systems

Intrinsic elas ci es in biological and robo c mul -body systems enable the execu on of highly dynamic and
complex mo ons, such as hi ng and throwing, or walking and running. The compliant actuator behavior
improves the mechanism robustness during rigid contacts with the environment and increases performance
and energy efficiency. However, the genera on of effec ve and efficient mo ons is not trivial.

In this sec on, we aim at robustly controlling periodic mo ons for robo c systems with Variable S ffness
Actua on (VSA) [46,1,11]. The idea is to exploit the natural dynamics of these systems and to control them so
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Figure 14: Time evolu on of the two coefficients w1 (blue, solid) and w2 (red, dashed) in the polynomial ap-
proxima on [top], reference (blue, solid) and es mated (red, dashed) damping [center], and the error between
the two [bo om]

that they are able to robustly handle external disturbances (such as robot-ground contacts) in a similar way as
their biological archetype. The underlying assump on is that these systems feature intrinsically some internal
nonlinear oscilla on modes, which correspond to the men oned dynamic mo on pa erns. The goal is to find
appropriate control strategies, that first enables to iden fy and then will excite one of these oscilla onmodes.
To this end, we propose two different control approaches.

The first approach, detailed in Sect. 6.1), achieves a desired dynamical behavior by means of a control law
and then decouples the closed-loop dynamics in terms of modal coordinates, constraining the mo on of the
robot to some invariantmanifold of its state space. Using these dynamic constraints, wewill be able to stabilize
limit cycles along one of the resul ng oscilla on modes, which is as close as possible to the natural dynamics
of the plant.

The second approach, presented in Sect. 6.2), extends the single-input single-output controller introduced
in [25] to the mul -input mul -output case. This is achieved by an adap ve part which converges to a coor-
dinate transforma on of the dominant oscilla on mode of the robo c plant. The coordinate transforma on
is then used to modally distribute the energy input over the joints, thereby increasing effec veness in the
excita on of limit cycles.

6.1 Modal decoupling and limit cycle control

The concept of modal decoupling is best introduced by considering first the dynamics of a rigid robot manip-
ulator, i.e.,

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ . (81)

As a ma er of fact, this model mimics closely the link dynamics (9) of a mul -dof VSA-driven robot. The only
apparent difference is in the right-hand side, where the flexibility torques τ e of the VSA case are replaced here
by the commanded motor torques τ of the rigid case.

Star ng then with the robot dynamics (81), assume that the following PD control lawwith addi onal terms
to compensate for Coriolis/centrifugal and gravity effects is applied

τ = uq +C(q, q̇)q̇ + g(q) +M(q)q̈d −Dd(q) ˙̃q −Kd(q)q̃, (82)
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where q̃ = q − qd is the tracking error with respect to a desired trajectory qd(t), Dd(q) and Kd(q) are
symmetric, posi ve definite (and possibly diagonal) damping and s ffness matrices, and we have introduced
an auxiliary control input uq for later use. Note that the impedance controller (82), when uq = 0, is able to
asympto cally track any desired smooth trajectory qd(t). Subs tu ng eq. (82) in (81), leads to the closed-loop
error dynamics

M(q)¨̃q +Dd(q) ˙̃q +Kd(q)q̃ = uq, (83)

To derive the decoupling coordinate transforma on for system (83), we invoke a result on the generalized
eigenvalue problem known from matrix algebra, see [15] and [35].

Lemma 1 Given a symmetric and posi ve definitematrixA ∈ Rn×n and a symmetric matrixB ∈ Rn×n, there
exist a non-singular matrixW ∈ Rn×n and a diagonal matrixBW ∈ Rn×n such thatW−TW−1 = A and
W−TBWW

−1 = B.

If we now apply Lemma 1 toA , M(q) andB , Kd(q), we obtain the transforma on

z = W−1(q) q̃ (84)

which maps the joint error coordinates q̃ to the desired modal coordinates z. In order to rewrite system (83)
in modal coordinates, we use the inverse of (84) namely

q̃ = W (q)z. (85)

Based on Lemma 1, the desired damping matrix should be designed in modal coordinates, namely as

Dd(q) = W−T(q)
(
2 diag

{
ξi
√
λi(q)

})
W−1(q) (86)

Here, ξi ≥ 0 are constant, normalized modal damping coefficients, for i = 1, . . . , n.
Subs tu ng (85) in eq. (83), we obtain the modal dynamics

z̈ + 2 diag
{
ξi
√
λi(q)

}
ż + diag {λi(q)} z = W T(q) (uq − γ) (87)

being

I = W T(q)M(q)W (q) (88)

diag {λi(q)} = W T(q)Kd(q)W (q) (89)

γ =
(
M(q)Ẅ (q) +Dd(q)Ẇ (q)

)
z + 2M(q)Ẇ (q)ż. (90)

Using in (87) the control law

uq = W−T(q)uz + γ, (91)

being uz the new control input, we obtain n subsystems in terms of the modal coordinates z:

z̈ + 2 diag
{
ξi
√
λi(q)

}
ż + diag {λi(q)}z = uz. (92)

To prove stability of the homogeneous closed-loop dynamics (92), we consider a posi ve definite Lyapunov
func on candidate Vi for each decoupled subsystem, and deduce stability if each me deriva ve V̇i is nega ve
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definite, i.e., Vi > 0,∀i ⇒ V =
∑

i Vi > 0, and V̇i < 0,∀i ⇒ V̇ =
∑

i V̇i < 0, ∀(zT żT )T ̸= 0). Thus,
consider the i-th decoupled subsystem

z̈i + 2 ξi
√
λi(q)żi + λi(q)zi = 0. (93)

With the state vector xi = (zi żi)T , a posi ve definite Lyapunov func on candidate is given by

Vi(xi) =
1
2
xT

i

(
c2 c1/2

c1/2 1

)
xi, (94)

where c1, c2 are posi ve constants and c2 > c21/4. The deriva ve of the Lyapunov func on

V̇i(xi, q) = −1
2
xT

i H i(λi(q))xi, (95)

will be nega ve definite, provided that the matrix

H i(λi(q)) =

(
c1λi(q) λi(q) + c1ξi

√
λi(q)− c2

symm 4ξi
√
λi(q)− c1

)
(96)

is posi ve definite. We can conclude that the equilibrium point xi = 0 of (93) is asympto cally stable, if the
leading principal minors ofH i(λi(q)) are strictly posi ve (as func ons of q, ∀q ∈ Rn), i.e.,

c1λi(q) > 0, (97)

det (H i(λi(q))) > 0. (98)

The proof of the existence of suitable constants c1, c2, and a comprehensive analysis of the corresponding
stability region are provided in [23].

In the following, we show how to produce an asympto cally stable limit cycle for the generic k-th decou-
pled system in (92). Se ng ξk = 0 and dividing by λk(t) > 0 (posi vity holds ∀t), the system becomes

1
λk(t)

z̈k + zk =
1

λk(t)
uzk

, (99)

with state (zk żk)
T ∈ R2. Similarly to what was done in [10], consider the scalar func on

H (t, zk, żk) =
1

2λk(t)
ż2
k +

1
2
z2
k ≥ 0, (100)

with me deriva ve along the trajectories of (99)

Ḣ (t, zk, żk) =
1

λk(t)
uzk

żk −
λ̇k(t)

2λk(t)2
ż2
k. (101)

Choose the input as

uzk
= λk(t)

(
−kV H̃ (t, zk, żk) żk +

λ̇k(t)
2λk(t)2

ż2
k

)
, (102)

where kV > 0, H̃ (t, zk, żk) = H (t, zk, żk)−Hd andHd > 0, such that the deriva ve ofH (t, zk, żk) results
in

Ḣ (t, zk, żk) = −kV H̃ (t, zk, żk) ż2
k. (103)

The system (99), unlike the one considered in [10], is non-autonomous and so we cannot apply directly La
Salle’s theorem. Nevertheless, with a similar argument, we can prove that it has an asympto cally stable limit
cycle Ω = {zk, żk |H (t, zk, żk) = Hd}. It remains to show stability and a rac veness of this limit cycle.
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Uniform stability Choosing as Lyapunov func on the con nuously differen able func on

V (t, zk, żk) =
1
2
H̃ (t, zk, żk)

2 , (104)

with

• V (t,Ω) = 0

• S1 (zk, żk) ≤ V (t, zk, żk) ≤ S2 (zk, żk)

• V̇ (t, zk, żk) = −kV H̃ (t, zk, żk)
2 żk

2 ≤ 0

∀t ≥ 0 and ∀ (zk, żk) ∈ R2, and where

S1 (zk, żk) =
1
2

(
1

2λk,max
ż2
k +

1
2
z2
k −Hd

)2

S2 (zk, żk) =
1
2

(
1

2λk,min
ż2
k +

1
2
z2
k −Hd

)2

are posi ve definite func ons on R2, we can conclude that Ω is uniformly stable.

A rac veness A rac veness is proven using Barbalat’s lemma (see, e.g., [43]). We have already shown that
V (t, zk, żk) is bounded from below and that V̇ (t, zk, żk) is nega ve semidefinite. In order to apply Barbalat’s
lemma, it remains only to show that V̈ (t, zk, żk) is bounded. This follows from

V̈ (t, zk, żk) = −2kV H̃ (t, zk, żk)
2 (kV żk + żkz̈k) ,

which is bounded since (99) is stable. So, we conclude that limt→∞ V̇ (t, zk, żk) = 0. Let Bϵ (Ω) be a neigh-
bourhood ofΩ, such that (zk = 0, żk = 0) /∈ Bϵ (Ω). SinceΩ is stable, we can choose the ini al condi on such
that the solu on remains always in Bϵ (Ω). Moreover, we have shown that either żk → 0 orH (t, zk, żk) →
Hd as t→∞, but since the system cannot converge to (zk ̸= 0, żk = 0) and (zk = 0, żk = 0) /∈ Bϵ (Ω) then
we conclude that the solu on can only converge to Ω = {zk, żk |H (t, zk, żk) = Hd}.

The last step of our applica on is the extension to the case of VSA-driven mul -dof robots, as modeled by
eqs. (9–11). We will do so by deriving a controller that is able to track any desired flexibility torque τ e,d, using
the basic concept of decoupling the flexible joint torque dynamics from the dynamics of the joint posi on.
The approach was proposed in [34] for the case of robots with constant joint s ffness, but allows a rather
straigh orward extension to the VSA case.

Consider the inversion of the flexibility torque func on ψ in (11)

θ − q = ψ−1(τ e).

Rearranging and differen a ng twice w.r.t. me yields

θ̇ = q̇ +
∂ψ−1(τ e)
∂τ e

τ̇ e, θ̈ = q̈ +
∂ψ−1(τ e)
∂τ e

τ̈ e +
d

dt

(
∂ψ−1(τ e)
∂τ e

)
τ̇ e. (105)

Subs tu ng the accelera on θ̈ in the motor equa on (10) leads to

B

(
∂ψ−1(τ e)
∂τ e

τ̈ e +
d

dt

(
∂ψ−1(τ e)
∂τ e

)
τ̇ e

)
+ τ e = τ −Bq̈. (106)
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If a desired flexibility torque profile τ e,d(t) has to be tracked at the joints, then the control input τ ∈ Rm will
be chosen as

τ = τ e,d +Bq̈ +B
d

dt

(
∂ψ−1(τ e)
∂τ e

)
τ̇ e +B

∂ψ−1(τ e)
∂τ e

(τ̈ e,d +Dτ ėτ +Kτeτ ) , (107)

where eτ = τ e,d − τ e is the control error and Kτ , Dτ are symmetric and posi ve definite gain matrices.
Note that the link accelera onq̈ required in (107) can be obtained from (9), since the flexiblity torques τ e can
be measured by a joint torque sensor. The control error dynamics becomes

ëτ +Dτ ėτ +

(
Kτ +

(
∂ψ−1(τ e)
∂τ e

)−1

B−1

)
eτ = 0, (108)

showing that asympto cal stability of eτ can be achieved by proper tuning of the control gains.
As a result, the modal limit cycle dynamics can be implemented for the VSA system (10)–(11) by simply

plugging as τ e,d in (107) the right hand-side of eq. (82), in which (91) and (102) are also used.

6.2 Modal adap ve bang-bang control

Our goal here is to control periodic mo ons of the link posi on coordinates q ∈ Rn in a VIA-driven robot using
the bang-bang control introduced in [25]. Since that controller accounts only for scalar quan es, we seek a
transforma on such that the mo on q(t) can be represented by a single coordinate, for instance, y1(t). The
basic idea can be explained in the context of differen al geometry (see also the sketch in Fig. 15(a)).

Consider the me series of joint posi ons q(t) represen ng the mo on of the mul -joint robot, where
q ∈ Q ⊂ Rn are coordinates of a manifold Q. Assume that we can represent the trajectory q(t) on a lower
dimensional manifold Y , with coordinates y ∈ Y ⊂ Rp, with p ≤ n (in par cular, for the present case of
bang-bang control, we will require p = 1). Assume further that this reduc on mapping

y = F (q,W ) (109)

can be parameterized by constant weightsW , and that the inverse mapping

q = G(y,W ) (110)

also exists. Then, similar to what done in [20], we can define an error func on for the composi on of the
reduc on mapping and of its inverse (also called the auto-associa ve mapping)

S = ∥q(t)− (G ◦ F ) (q(t),W )∥2 . (111)

For a perfect reconstruc on mapping, the sum of error func ons evaluated at each point of the trajectory
q(t) must be iden cally zero. In general, this leads to a nonlinear op miza on problem, where the matrix of
weights Ŵ represents the op mal solu on.

To clarify themeaning of the reduc onmapping (109) in a simple case, consider a linear, second-order and
non-dissipa ve mechanical system in free evolu on

Mq̈ +Kq = 0, (112)

whereM ,K ∈ Rn×n are constant, symmetric, and posi ve definite matrices. Using the eigenvectors ŵi ∈
Rn of the matrix1 A := K−1/2MK−1/2, where ŵi are normalized so that ŵT

i ŵj = δij (the Kronecker
delta), the mo on of the system (112) can be expressed as

q(t) = ŵ1y1(t) + ŵ2y2(t) + . . .+ ŵnyn(t), (113)

1The matrix A results from the coordinate transforma on q = K−1/2z, i.e., z̈ + Az = 0, with A being s ll symmetric and
posi ve definite. The eigenvectors ofA are related to the generalized eigenvectors ofK ,M [16, chap. 4.5].
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(a) The basic idea of the modal
transforma on

(b) Local approxima on of the
modal transforma on

Figure 15: Manifold interpreta on of modal transforma ons

where yi(t) = âi sin(ωit− ϕi) are me modula ons of the eigenmodes corresponding to mo ons along ŵi.
Hereby, âi are amplitudes, ωi eigenfrequencies and ϕi phase angles. From (113) it can be seen that

q =
∑

i

wiyi, (114)

where wi ∈ Rn are parameters of the mappings (114) and q ∈ Rn and yi ∈ R represent the instantaneous
values of the trajectory q(t) and yi(t), respec vely. Due to orthogonality ofwi, the modal reduc on mapping
has the form

yi = wT
i q. (115)

With the above in mind, we can derive an adap ve law for the linear system (112), so as to learn the true
parameters wi of the mapping (115) under the assump on of unknown (or uncertain)K andM . Assume
that we measure a new value of the actual joint posi on q(k) = q(tk) (with tk = kTs) at each discrete- me
sample k. Consider further the error func on

S =
1
4

∥∥∥∥∥q(k)−∑
i

wiw
T
i q(k)

∥∥∥∥∥
2

, (116)

which represents the squared distance between the input q(k) and the auto-associa ve mappingwiw
T
i q(k)

obtained composing the reduc on mapping (115) and the inverse mapping (114). Then, the gradient descent
rule for minimizing S is

w̃i(k) = w̃i(k − 1)− γ ∂S(q(k),wi(k − 1))
∂wi

, (117)

where γ > 0 determines the convergence rate and

∂S(q(k),wi(k − 1))
∂wi

= −yi(k) (q(k)− yi(k)wi(k − 1)) . (118)

The algorithm (117–118) minimizes the error func on (116) recursively, and provides a new guess w̃i ∈ Rn

at each sample k (note that yi(k) = wT
i (k − 1) q(k)). However, since the algorithm does not enforce the

needed orthonormality of the weights w̃i, we incorporate in the itera on a Gram-Schmidt orthogonaliza on
(see, e.g., [16, chap. 0.6]) from w̃i(k) to w̄i(k)

w̄i(k) = w̃i(k)−
∑
j<i

wT
j (k − 1) w̃i(k)wj(k − 1).
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and a successive normaliza on from w̄i(k) to the final outputwi(k) at step k

wi(k) =
(
w̄T

i (k) w̄i(k)
)−1/2

w̄i(k).

Assuming that γ ≪ 1 and neglec ng terms of orderO(γ2), we obtain the learning rule proposed by [33]:

wi(k) = wi(k − 1) + γ yi(k)
(
q(k)− yi(k)wi(k − 1)− 2

∑
j<i

yj(k)wj(k − 1)
)
. (119)

The p dominant eigenvectors ŵ1, . . . , ŵp of the data covariance matrixC = E{QQT } (of expected val-
ues), where Q = (q(1), . . . , q(k)) ∈ Rn×k, represent asympto cally stable fixed-points of the difference
equa on (119) (for a proof, see [32,39]). For the linear mechanical system (112), the eigenvectors ŵ1, . . . , ŵp

of the data covariance matrixC are related to the oscilla on modes, i.e., ŵi are eigenvectors of the matrixA
that are represented in the par cular mo on considered. Moreover, in the presence of damping, the eigen-
vectors of matrixC approximate the eigenvectors of the resonant modes (for more details, see [5]).

To move out of the simple linear mechanical system (112) and consider the full nonlinear dynamics of
the links of a mul -dof robot system (either with rigid joints and conven onal actua on, or driven by VSA
units —the treatment is similar, as shown in Sec. 6.1), the no on of eigenmodes for linear systems might be
replaced by so-called nonlinear normal modes [42]. For the present approach, we assume that the dominant
mode is synchronous in amplitudes (i.e., the oscilla ons of the joints are in phase), so that themo on along this
mode can be represented by a single curvilinear coordinate. Therefore, when the algorithm described by (119)
converges sufficiently fast, the weight vector wi(k) locally approximates the instantaneous lineariza on of
the nonlinear normal mode. This is sketched in Fig. 15(b). Finally, it is worth men oning that the order of
the weight vectors wi(k) depend on the par cular mo on q(k), which the only informa on source of the
adapta on algorithm. The first weight vector w1 corresponds to the most dominant principal component of
the trajectory q(k), i.e., to the eigenvalue of the matrixC with the largest magnitude.

With the above tools and analysis in mind, assume that we want to excite periodic mo ons around a ref-
erence motor posi on θ0 ∈ Rm. Consider the PD control

τ = −KDθ̇ −KP (θ − θd) , (120)

where KD,KP ∈ Rm×m are symmetric and posi ve definite control gain matrices, and θd ∈ Rm is the
desired motor posi on for the VSA robot system (9–11), which is taken here as a tunable control input. Then,
usingw1 ∈ Rm provided by the adapta on algorithm (119), we can compute the following bang-bang control
in the direc on of the first mode:

∆θz(τz) =

{
sign (τz) θ̂z, if |τz| > ϵτz

0, otherwise.
(121)

Herein,

τz = wT
1

((
∂Ue(θ, q)

∂θ

)T

−
(
∂Ue(θ, q)

∂θ

)T
∣∣∣∣∣
θ=θ0

)
∈ R (122)

is the generalized force ac ng in the direc on of the first mode, the posi ve scalar ϵτz is the corresponding
threshold, and θ̂z ∈ R is the modal switching amplitude. Finally, the control input θd in (120) will be adapted
as

θd = θ0 + ∆θ. (123)

In this way, we can interpret ∆θz(τz) ∈ R as a tangent vector to the modal manifold which transforms with
the Jacobianw1 of the inverse reduc on mapping (114), i.e., ∆θ = w1∆θz(τz).
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6.3 Experimental results

Themodal decoupling control presented in Sect. 6.1was tested on the first four VSA joints of the DLRHand Arm
System. The limit cycle controller has been applied either to excite the first or the second mode. Figure 16
shows pairs of plots in the (posi on/ velocity) phase plane of the modal and joint mo on in four different
cases. In Fig. 16(a-b), the joint s ffness was preset at the minimum values, while in (c-d) the joint s ffness was
increased to half of its maximum feasible value. In both cases, only the first mode mo on (blue lines in (a) and
(c)) approaches asympto cally the limit cycle, while the remaining modes stay around the origin. In terms of
joint mo on, the first and the fourth link are those mainly involved (plots blue and magenta in (b) and (d)). In
Fig. 16(e), the second mode undergoes cyclic mo on (in green) and this involves the mo on of all four joints
(f). In order to induce all these limit cycle mo ons, the controlled robot arm was manually pushed from an
ini al configura on (different for the first and second modes). Finally, the a rac ve behavior of the limit cycle
can be observed in Fig. 16(g) and 16(h), respec vely on the modal and joint mo on. In this case the robot
end-effector has been stopped and then released by hand. A er this disturbance, the mo on converges back
to the limit cycle.

(a) First mode mo on (b) Joint mo on (c) First mode mo on (d) Joint mo on

(e) Second mode mo on (f) Joint mo on (g) Modal mo on (h) Joint mo on

Figure 16: Phase plots of modal and joint mo on in the experimental valida on of the modal limit cycle con-
troller for a VSA robo c arm (the first four joints of the DLR Hand Arm System)

The modal adap ve bang-bang control of Sect. 6.2 was tested in a hi ng experiment with the DLR Hand
Arm System, see Fig. 17(a). As shown in Fig. 17(b), the controller is able to stabilize with this control law a
periodic hi ng robot mo on in the presence of mul ple repeated environmental contacts. A er the ini al
disturbance, mo on in the y and z direc ons approaches a periodic steady state within one oscilla on cycle.

Finally, to illustrate the adaptability of the control approach, we have performed also some simula ons for
a robo c systemwith hybrid dynamics and compliance. For the planar legged robot driven by Serial Elas c Ac-
tuators (SEA) shown in Fig. 18(a), an open-loop sinusoidal excita on and the modal adap ve feedback control
are compared in Fig. 18(b). In the la er case, the frequency of the ver cal oscilla on of the trunk converges
to the frequency of the task. More simula ons are provided in [24].
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(a) Hardware set-up (with characteris c of the springs in the joints)

(b) Cartesian mo on of the end-effector (in blue) and controlled behavior of
the desired motor posi ons θd

Figure 17: Bang-bang modal adap ve control in a hi ng experiment with the DLR Hand Arm System
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(a) Technical sketch of a planar system with two legs
(f = front, r = rear)

(b) Feedforward sinusoidal excita on (le ) andmodal adap ve bang-bang control (right)
for cyclic hopping mo on

Figure 18: Simula on results for a planar legged system with compliant actua on
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7 Op mal control for maximizing link velocity of visco-elas c joints

During the first two years of the project, several results have been obtained by the partners on the op mal
control of single-dof and mul -dof robot systems, including various form of compliance at the joints (constant
elas city, SEA, VSA, and so on) and considering different objec ve func ons. Early results were summarized
already in the form of a milestone (MS3 Op mal control of modular VSA manipulators) reached at the end of
month 12, while further developments have been presented in scien fic papers at conferences and submi ed
to journals. It is then appropriate to conclude the present document on the control of compliant robots with
just one of the latest obtained technical results on this subject.

Twomajor proper es of compliant actuators are the ability to absorb shocks, and to store poten al energy
in the elas c elements. The la er can be used to realize explosive mo ons, as those observed in humans [14].
Concentra ng on this second advantage of purely elas c joints, we have inves gated the role and influence of
mechanical damping in visco-elas c joints on the op mal control solu on. In par cular, we refer to the simple
benchmark shown in Fig. 19 . and to the problem of reaching with this 1-dof system the maximum possible
link velocity at a given terminal me tf .

 

Figure 19: 1-dof visco-elas c Joint

Actua on models of increasing complexity have been considered with the purpose of ge ng more insight
about the influence of a constant joint damping on the op mal control policy for explosive mo on tasks. In
order to obtain analy cal results, we started first by analysing a simple velocity-controlled motor model. The
problem of maximizing the link velocity can be formulated mathema cally as an Op mal Control problem
having just a terminal cost component to mbe minimized (at me tf )

J = −q̇(tf ). (124)

A solu on to this problem had already been found in the case of undamped elas c joints: The op mal con-
trol strategy is bang-bang and periodic with the system’s eigenfrequency ω =

√
KJ/M . By addressing the

modified problem for visco-elas c joints we wanted to reveal the effect of damping on the structure of this
nominal op mal strategy and to see whether the maximum link velocity would remain bounded by le ng tf
go to infinity in the cost func onal (124).

Pontryagin’s Maximum Principle has been the main mathema cal tool used to obtain analy cally op mal
solu ons for simple motor models. On the other hand, for more complex models and cases, we resorted
to the numerical op miza on so ware GPOPS. Whenever possible, numerical results were also validated in
comparison with analy cal results. The theore cal findings show that the op mal control for under-damped
joints is again periodic, but is now tuned with the system’s damped eigenfrequency ωd = ω

√
1−D2, where

D is the damping ra o. IncreasingD leads to an increased period for the op mal control law, but only un l the
damping ra o is below unity. For cri cally damped and over-damped joints, the op mal control is no longer
periodic and must switch once when a sufficiently large final me is allowed.

Having determined this op mal strategy, we looked at the behavior of the maximum link velocity q̇max(tf )
as tf increases. While increasing the final me always increases the final achieved link velocity, this increase
is bounded and a maximum bound on the link velocity can be found. Figure 20 illustrates the dependence of
this bound by plo ng the performance index ϵ(n,D), defined as the ra o of the maximum link velocity q̇max

to the maximum motor velocity θ̇max, in terms damping ra osD, as well as for different motor switchings n.
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Figure 20: Performance ϵ(n,D) = q̇max/θ̇max, with input u1 = θ̇, and n = switchings of u∗1
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Figure 21: Op mal control results for a visco-elas c joint with different motor models

For the velocity-controlled model, we could also show theore cally that a direct rela on exists between
the system co-states and the obtained link velocity. This is given by the integral

q̇(tf ) = −
∫ tf

0
σ∗(ξ) θ̇(ξ) dξ, (125)

where σ∗ is the switching func on, which is expressed as a linear combina on of the system co-states. One
advantage of having a valid formula like (125) is the possibility of analyzing the influence of motor velocity
on the achieved link velocity along the whole trajectory. Remarkably, the above formula holds for any of the
chosen motor models. We can thus interpret the control strategies computed numerically for more complex
motor models having accelera on or torque as input by using (125), and in par cular the switching func on
σ∗, see Figure 21. Further analy cal and numerical results are contained in the submi ed paper [36].
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[1] A. Albu-Schäffer, O. Eiberger, M. Fuchs, M. Grebenstein, S. Haddadin, Ch. O , A. Stemmer, T. Wimböck,
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